Studies of the atmosphere of ultra-hot Jupiter TOI-1431b/MASCARA-5b

2021 ◽  
Author(s):  
Monika Stangret ◽  
Enric Palle ◽  
Núria Casasayas-Barris ◽  
Mahmoud Oshagh

<p>Ultra-hot Jupiters are defined as giant planets with equilibrium temperatures larger than 2000 K. Most of them are found orbiting bright A-F stars, making them extremely suitable object to study their atmospheres using high-resolution spectroscopy.</p> <p>TOI-1431b, also known as MASCARA-5b, a newly discovered planet with the temperature of 2375 K is a prefect example of ultra-hot Jupiter. We studied this object using three transit observations obtained with high-resolution spectrographs HARPS-N and EXPRES. Analysis of Rossiter-McLaughlin effect shows that the planet is in the polar orbit, which speaks about an interesting dynamical history, and perhaps indicating the presence of more than one planet in the early history of this system. Applying the cross-correlation and transmission spectroscopy method, we find no evidence of atoms and molecules in this planet. There results are at odds with the other studies of similar UHJs orbiting bright stars, where various species have been found.</p>

2019 ◽  
Vol 490 (1) ◽  
pp. 1094-1110 ◽  
Author(s):  
Diana Kossakowski ◽  
Néstor Espinoza ◽  
Rafael Brahm ◽  
Andrés Jordán ◽  
Thomas Henning ◽  
...  

Abstract We present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-min cadence Transiting Exoplanet Survey Satellite (TESS) photometry from Sector 1 and thoroughly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high-resolution spectroscopy (FEROS, CORALIE), and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package juliet reveals that TOI-150b is a $1.254\pm 0.016\ \rm {R}_ \rm{J}$, massive ($2.61^{+0.19}_{-0.12}\ \rm {M}_ \rm{J}$) hot Jupiter in a 5.857-d orbit, while TOI-163b is an inflated ($R_ \rm{P}$ = $1.478^{+0.022}_{-0.029} \,\mathrm{ R}_ \rm{J}$, $M_ \rm{P}$ = $1.219\pm 0.11 \, \rm{M}_ \rm{J}$) hot Jupiter on a P = 4.231-d orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit ($e=0.262^{+0.045}_{-0.037}$), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization time-scale, which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization – in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter–McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ).


2020 ◽  
Vol 495 (1) ◽  
pp. 224-237 ◽  
Author(s):  
Siddharth Gandhi ◽  
Matteo Brogi ◽  
Sergei N Yurchenko ◽  
Jonathan Tennyson ◽  
Phillip A Coles ◽  
...  

ABSTRACT High-resolution spectroscopy (HRS) has been used to detect a number of species in the atmospheres of hot Jupiters. Key to such detections is accurately and precisely modelled spectra for cross-correlation against the R ≳ 20 000 observations. There is a need for the latest generation of opacities which form the basis for high signal-to-noise detections using such spectra. In this study we present and make publicly available cross-sections for six molecular species, H2O, CO, HCN, CH4, NH3, and CO2 using the latest line lists most suitable for low- and high-resolution spectroscopy. We focus on the infrared (0.95–5 μm) and between 500 and 1500 K where these species have strong spectral signatures. We generate these cross-sections on a grid of pressures and temperatures typical for the photospheres of super-Earth, warm Neptunes, and hot Jupiters using the latest H2 and He pressure broadening. We highlight the most prominent infrared spectral features by modelling three representative exoplanets, GJ 1214 b, GJ 3470 b, and HD 189733 b, which encompass a wide range in temperature, mass, and radii. In addition, we verify the line lists for H2O, CO, and HCN with previous high-resolution observations of hot Jupiters. However, we are unable to detect CH4 with our new cross-sections from HRS observations of HD 102195 b. These high-accuracy opacities are critical for atmospheric detections with HRS and will be continually updated as new data become available.


2020 ◽  
Author(s):  
Monika Stangret ◽  
Núria Casasayas-Barris ◽  
Enric Palle ◽  
Fei Yan ◽  
Alejandro Sánchez-López ◽  
...  

<p>Thanks to the different Doppler velocities of the Earth, the host star and the planet using high-resolution spectroscopy we are able to detect and characterise exoplanetary atmospheres. Exoplanetary signal is buried in the residual noise, however by preforming cross-correlation of atmospheric transmission model and hundreds of atmospheric lines the signal can be increase. Studying the atmospheres of ultra-hot Jupiters, objects with the temperature higher than 2200K which orbit close to their host stars, gives us great laboratory to study chemistry of the exoplanets. MASCARA-2b also known as KELT-20b with the temperature of 2230 K is a perfect example of ultra hot Jupiter. We studied this object using three transit observations obtained with HARPS-North. Using cross-correlation method we detected strong absorption of Fe I and FeII, which agrees with theoretical models. Additionally, because of the fast rotation of the star, the crosscorrelation residuals show strong Rossiter-MacLaughlin effect.</p>


2020 ◽  
Vol 494 (1) ◽  
pp. 363-377 ◽  
Author(s):  
Samuel H C Cabot ◽  
Nikku Madhusudhan ◽  
Luis Welbanks ◽  
Anjali Piette ◽  
Siddharth Gandhi

ABSTRACT The class of ultra-hot Jupiters comprises giant exoplanets undergoing intense irradiation from their host stars. They have proved to be a particularly interesting population for their orbital and atmospheric properties. One such planet, WASP-121b, is in a highly misaligned orbit close to its Roche limit, and its atmosphere exhibits a thermal inversion. These properties make WASP-121b an interesting target for additional atmospheric characterization. In this paper, we present analyses of archival high-resolution optical spectra obtained during transits of WASP-121b. We model the Rossiter-McLaughlin effect and the Centre-to-Limb Variation and find that they do not significantly affect the transmission spectrum in this case. However, we discuss scenarios where these effects warrant more careful treatment by modelling the WASP-121 system and varying its properties. We report a new detection of atmospheric absorption from H α in the planet with a transit depth of $1.87\pm 0.11{{\ \rm per\ cent}}$. We further confirm a previous detection of the Na i doublet, and report a new detection of Fe i via cross-correlation with a model template. We attribute the H α absorption to an extended Hydrogen atmosphere, potentially undergoing escape, and the Fe i to equilibrium chemistry at the planetary photosphere. These detections help to constrain the composition and chemical processes in the atmosphere of WASP-121b.


Author(s):  
Dmitry V. Bisikalo ◽  
Pavel V. Kaygorodov ◽  
Valery I. Shematovich

The history of exoplanetary atmospheres studies is strongly based on the observations and investigations of the gaseous envelopes of hot Jupiters—exoplanet gas giants that have masses comparable to the mass of Jupiter and orbital semi-major axes shorter than 0.1 AU. The first exoplanet around a solar-type star was a hot Jupiter discovered in 1995. Researchers found an object that had completely atypical parameters compared to planets known in the solar system. According to their estimates, the object might have a mass about a half of the Jovian mass and a very short orbital period (four days), which means that it has an orbit roughly corresponding to the orbit of Mercury. Later, many similar objects were discovered near different stars, and they acquired a common name—hot Jupiters. It is still unclear what the mechanism is for their origin, because generally accepted theories of planetary evolution predict the formation of giant planets only at large orbital distances, where they can accrete enough matter before the protoplanetary disc disappears. If this is true, before arriving at such low orbits, hot Jupiters might have a long migration path, caused by interactions with other massive planets and/or with the gaseous disc. In favor of this model is the discovery of many hot Jupiters in elliptical and highly inclined orbits, but on the other hand several observed hot Jupiters have circular orbits with low inclination. An alternative hypothesis is that the cores of future hot Jupiters are super-Earths that may later intercept matter from the protoplanetary disk falling on the star. The scientific interest in hot Jupiters has two aspects. The first is the peculiarity of these objects: they have no analogues in the solar system. The second is that, until recently, only for hot Jupiters was it possible to obtain observational characteristics of their atmospheres. Many of the known hot Jupiters are eclipsing their host stars, so, from their light curve and spectral data obtained during an eclipse, it became possible to obtain information about their shape and their atmospheric composition. Thus it is possible to conclude that hot Jupiters are a common type of exoplanet, having no analogues in the solar system. Many aspects of their evolution and internal structure remain unclear. Being very close to their host stars, hot Jupiters must interact with the stellar wind and stellar magnetic field, as well as with stellar flares and coronal mass ejections, allowing researchers to gather information about them. According to UV observations, at least a fraction of hot Jupiters have extended gaseous envelopes, extending far beyond of their upper atmospheres. The envelopes are observable with current astronomical instruments, so it is possible to develop their astrophysical models. The history of hot Jupiter atmosphere studies during the past 20 years and the current status of modern theories describing the extended envelopes of hot Jupiters are excellent examples of the progress in understanding planetary atmospheres formation and evolution both in the solar system and in the extrasolar planetary systems.


2018 ◽  
Vol 619 ◽  
pp. A3 ◽  
Author(s):  
Lorenzo Pino ◽  
David Ehrenreich ◽  
Romain Allart ◽  
Christophe Lovis ◽  
Matteo Brogi ◽  
...  

Transmission spectroscopy with ground-based, high-resolution instruments provides key insight into the composition of exoplanetary atmospheres. Molecules such as water and carbon monoxide have been unambiguously identified in hot gas giants through cross-correlation techniques. A maximum in the cross-correlation function (CCF) is found when the molecular absorption lines in a binary mask or model template match those contained in the planet. Here, we demonstrate how the CCF method can be used to diagnose broadband spectroscopic features such as scattering by aerosols in high-resolution transit spectra. The idea consists in exploiting the presence of multiple water bands from the optical to the near-infrared. We have produced a set of models of a typical hot Jupiter spanning various conditions of temperature and aerosol coverage. We demonstrate that comparing the CCFs of individual water bands for the models constrains the presence and the properties of the aerosol layers. The contrast difference between the CCFs of two bands can reach ~100 ppm, which could be readily detectable with current or upcoming high-resolution stabilized spectrographs spanning a wide spectral range, such as ESPRESSO, CARMENES, HARPS-N+GIANO, HARPS+NIRPS, SPIRou, or CRIRES+.


2021 ◽  
Author(s):  
Xiangning Su ◽  
Hui Zhang ◽  
Jilin Zhou

Abstract Many works based on the correlations between the occurrence rate of various giant planets and stellar properties of their hosts have provided clues revealing planetary formation processes. However, few researches have focused on the mutual occurrence rate of different type of planets and their dependency upon the stellar properties, which may help to provide an insight into the dynamics evolution history of planetary systems. To investigate the mutual occurrence rates, first we define three types of giant planets, i.e. cold Jupiter(CJ), warm Jupiter(WJ) and hot Jupiter(HJ), according to their position normalized by the snow-line in the system, ap > asnow, 0:1asnow < ap ≤ asnow and ap ≤ 0:1asnow, respectively. Then, we derive their occurrence rates(ηHJ,ηwJ,ηcJ) considering completeness correction caused by different detection methods (RV and transit) and surveys (HARPS& CORALIE and Kepler). Finally, we investigate the correlation between the relative occurrence rates, i.e. ηcJ/ηwJ or ηwJ/ηHJ, and various stellar properties, e.g. stellar metallicity and effective temperature Teff . We find that ηWJ from RV and transit surveys show a similar increasing trend with the increasing stellar effective temperature when Teff ≤ 6100K. While ηcJ from RV samples is almost flat within Teff in (4600K;6100K], and ηHJ from transit samples is increasing with increasing stellar effective temperature within 3600K < Te f f < 7100K. Further more, we find that the mutual occurrence rate between CJ and WJ, i.e. ηcJ/ηwJ , shows a decreasing trend with the increasing stellar effective temperature. In contrary, the ratio ηwJ/ηHJ is reversely depends on the stellar effective temperature. After a series of consistency tests, our results suggest the in-situ hypothesis can be excluded from the formation process of both WJ and HJ. However, the origin and evolution history of HJ may be quite different from that of WJ.


2020 ◽  
Vol 641 ◽  
pp. A161
Author(s):  
Y. Zhang ◽  
I. A. G. Snellen ◽  
P. Mollière ◽  
F. J. Alonso-Floriano ◽  
R. K. Webb ◽  
...  

Context. It has been suggested that the helium absorption line at 10 830 Å that originates from the metastable triplet state 23S is an excellent probe for the extended atmospheres of hot Jupiters and their hydrodynamic escape processes. It has recently been detected in the transmission spectra of a handful of planets. The isotropic reemission will lead to helium airglow that may be observable at other orbital phases. Aims. We investigate the detectability of He I emission at 10 830 Å in the atmospheres of exoplanets using high-resolution spectroscopy. This would provide insights into the properties of the upper atmospheres of close-in gas giants. Methods. We estimated the expected strength of He I emission in hot Jupiters based on their transmission signal. We searched for the He I 10 830 Å emission feature in τ Boo b in three nights of high-resolution spectra taken by CARMENES at the 3.5m Calar Alto telescope. The spectra from each night were corrected for telluric absorption, sky emission lines, and stellar features, and were shifted to the planetary rest frame to search for the emission. Results. The He I emission is not detected in τ Boo b at a 5σ contrast limit of 4 × 10−4 for emission line widths of >20 km s−1. This is about a factor 8 above the expected emission level (assuming a typical He I transit absorption of 1% for hot Jupiters). This suggests that targeting the He I emission with well-designed observations using upcoming instruments such as VLT/CRIRES+ and E-ELT/HIRES is possible.


2019 ◽  
Vol 628 ◽  
pp. A9 ◽  
Author(s):  
N. Casasayas-Barris ◽  
E. Pallé ◽  
F. Yan ◽  
G. Chen ◽  
S. Kohl ◽  
...  

Ultra-hot Jupiters orbit very close to their host star and consequently receive strong irradiation, causing their atmospheric chemistry to be different from the common gas giants. Here, we have studied the atmosphere of one of these particular hot planets, MASCARA-2b/KELT-20b, using four transit observations with high resolution spectroscopy facilities. Three of these observations were performed with HARPS-N and one with CARMENES. Additionally, we simultaneously observed one of the transits with MuSCAT2 to monitor possible spots in the stellar surface. At high resolution, the transmission residuals show the effects of Rossiter-McLaughlin and centre-to-limb variations from the stellar lines profiles, which we have corrected to finally extract the transmission spectra of the planet. We clearly observe the absorption features of CaII, FeII, NaI, Hα, and Hβ in the atmosphere of MASCARA-2b, and indications of Hγ and MgI at low signal-to-noise ratio. In the case of NaI, the true absorption is difficult to disentangle from the strong telluric and interstellar contamination. The results obtained with CARMENES and HARPS-N are consistent, measuring an Hα absorption depth of 0.68 ± 0.05 and 0.59 ± 0.07%, and NaI absorption of 0.11 ± 0.04 and 0.09 ± 0.05% for a 0.75 Å passband, in the two instruments respectively. The Hα absorption corresponds to ~1.2 Rp, which implies an expanded atmosphere, as a result of the gas heating caused by the irradiation received from the host star. For Hβ and Hγ only HARPS-N covers this wavelength range, measuring an absorption depth of 0.28 ± 0.06 and 0.21 ± 0.07%, respectively. For CaII, only CARMENES covers this wavelength range measuring an absorption depth of 0.28 ± 0.05, 0.41 ± 0.05 and 0.27 ± 0.06% for CaII λ8498Å, λ8542Å and λ8662Å lines, respectively. Three additional absorption lines of FeII are observed in the transmission spectrum by HARPS-N (partially covered by CARMENES), measuring an average absorption depth of 0.08 ± 0.04% (0.75 Å passband). The results presented here are consistent with theoretical models of ultra-hot Jupiters atmospheres, suggesting the emergence of an ionised gas on the day-side of such planets. Calcium and iron, together with other elements, are expected to be singly ionised at these temperatures and be more numerous than its neutral state. The Calcium triplet lines are detected here for the first time in transmission in an exoplanet atmosphere.


2020 ◽  
Vol 635 ◽  
pp. A171 ◽  
Author(s):  
G. Chen ◽  
N. Casasayas-Barris ◽  
E. Pallé ◽  
F. Yan ◽  
M. Stangret ◽  
...  

WASP-52b is a low-density hot Jupiter orbiting a moderately active K2V star. Previous low-resolution studies have revealed a cloudy atmosphere and found atomic Na above the cloud deck. Here we report on the detection of excess absorption at the Na doublet, the Hα line, and the K D1 line. We derived a high-resolution transmission spectrum based on three transits of WASP-52b, observed with the ultra-stable, high-resolution spectrograph ESPRESSO at the Very Large Telescope array. We measured a line contrast of 1.09 ± 0.16% for Na D1, 1.31 ± 0.13% for Na D2, 0.86 ± 0.13% for Hα, and 0.46 ± 0.13% for K D1, with a line FWHM range of 11–22 km s−1. We also found that the velocity shift of these detected lines during the transit is consistent with the planet’s orbital motion, thus confirming their planetary origin. We did not observe any significant net blueshift or redshift that could be attributed to planetary winds. We used activity indicator lines as control but found no excess absorption. However, we did notice signatures arising from the Center-to-Limb variation (CLV) and the Rossiter-McLaughlin (RM) effect at these control lines. This highlights the importance of the CLV + RM correction in correctly deriving the transmission spectrum, which, if not corrected, could resemble or cancel out planetary absorption in certain cases. WASP-52b is the second non-ultra-hot Jupiter to show excess Hα absorption after HD 189733b. Future observations targeting non-ultra-hot Jupiters that show Hα could help reveal the relation between stellar activity and the heating processes in the planetary upper atmosphere.


Sign in / Sign up

Export Citation Format

Share Document