scholarly journals Maternal Dietary Linoleic Acid Altered Intestinal Barrier Function in Domestic Pigeons (Columba Livia)

2020 ◽  
Author(s):  
Qianqian Xu ◽  
Xiaoting Zou ◽  
Xinyang Dong

Abstract BackgroundLinoleic acid (LA) is predominantly essential for poultry. Deficiency of LA in poultry were manifested in various aspects such as retarded growth and reduced resistance to disease. The effects of LA on intestinal health in vitro and in mammals has been studied, whereas research related to the effects of LA on intestine health in poultry was scanty. Intestinal health and immune function play an important role in pigeon squab growth. Considering squabs are fed by their parents, the purpose of this study was to explore the effects of maternal dietary LA on intestinal barrier function in squabs by determining intestinal morphology, gene expression of tight junction protein, immune cytokines, and microbial flora.ResultsA completely randomized design with a control group, 1% dietary LA supplementation group, 2% dietary LA supplementation group, and 4% dietary LA supplementation group was used. Six squabs from each treatment were randomly sampled at 21 posthatch. Results indicated that LA supplementation improved intestinal morphology as reflected by increased villus height, villus area and the ratio of villus to crypt, and the promotion at dosage of 1% was most significant. Besides, 1% LA supplementation elevated distribution density of goblet cell in intestine, and strengthened tight junction between enterocytes by up-regulating claudin3 and occludin gene expression, but down-regulating claudin2 gene expression. Moreover, 1% LA supplementation reduced secretion of pro-inflammation cytokines and increased anti-inflammation cytokines partly. The diversity index Chao1 of intestinal microbiota in 1% LA supplementation group was higher than other groups. And Butyrivibrio as beneficial bacteria was the biomarker of LA1%. However, excessive (4%) LA supplementation led to adverse impact on intestinal immunity and microbiota.ConclusionsMaternal dietary LA in three levels all could improve intestinal morphology in squabs. Therein, appropriate dosage (1%) supplementation might enhance mucosal protection and epithelium barrieer in squabs, and furthermore consolidated intestine immunity and luminal microbial environment. However, excessive (4%) LA supplementation might lead to adverse impact on immunity and microbiota. Maternal dietary LA might alter intestinal barrier function in pigeon squabs in a dose-dependent manner.

2020 ◽  
pp. 1-34
Author(s):  
Qianqian Xu ◽  
Jiashu Wen ◽  
Xiaoming Wang ◽  
Xiaoting Zou ◽  
Xinyang Dong

Abstract Linoleic acid (LA) is predominantly essential for poultry. Poultry lacking linoleic acid showed retarded growth and reduced disease resistance. Intestinal barrier function plays an important role in pigeon squab growth, whereas research on the effects of LA on intestinal health in altrices is scant. Considering that squabs are fed by their parents, the purpose of this study was to explore the effects of maternal dietary LA on the intestinal morphology, gene expression of tight junction proteins, immune cytokines, and microbial flora in squabs. A completely randomized design with a control group, 1% LA supplementation group, 2% LA supplementation group, and 4% LA supplementation group were used. Six squabs from each treatment were randomly sampled at 21 days post hatching. The results indicated that LA supplementation improved intestinal morphology, as reflected by the increased villus height, villus area and the ratio of villi to crypts. In addition, 1% LA supplementation elevated the density of goblet cells in the intestine, and strengthened tight junctions by upregulating claudin-3 and occludin gene expression but downregulating claudin-2 gene expression. Moreover, 1% LA supplementation reduced the secretion of proinflammatory cytokines and partly increased anti-inflammatory cytokines. The diversity of the intestinal microbiota in the 1% LA supplementation group was higher than that in the other groups. As beneficial bacteria, butyrivibrio was the biomarker of 1% LA supplementation. However, excessive (4%) LA supplementation led to adverse impacts on intestinal immunity and microbiota. In conclusion, maternal dietary LA might alter intestinal barrier function in pigeon squabs in a dose-dependent manner. Supplementation with 1% LA was suggested in parental pigeons.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 988 ◽  
Author(s):  
Kaisa Hiippala ◽  
Hanne Jouhten ◽  
Aki Ronkainen ◽  
Anna Hartikainen ◽  
Veera Kainulainen ◽  
...  

The intestinal microbiota, composed of pro- and anti-inflammatory microbes, has an essential role in maintaining gut homeostasis and functionality. An overly hygienic lifestyle, consumption of processed and fiber-poor foods, or antibiotics are major factors modulating the microbiota and possibly leading to longstanding dysbiosis. Dysbiotic microbiota is characterized to have altered composition, reduced diversity and stability, as well as increased levels of lipopolysaccharide-containing, proinflammatory bacteria. Specific commensal species as novel probiotics, so-called next-generation probiotics, could restore the intestinal health by means of attenuating inflammation and strengthening the epithelial barrier. In this review we summarize the latest findings considering the beneficial effects of the promising commensals across all major intestinal phyla. These include the already well-known bifidobacteria, which use extracellular structures or secreted substances to promote intestinal health. Faecalibacterium prausnitzii, Roseburia intestinalis, and Eubacterium hallii metabolize dietary fibers as major short-chain fatty acid producers providing energy sources for enterocytes and achieving anti-inflammatory effects in the gut. Akkermansia muciniphila exerts beneficial action in metabolic diseases and fortifies the barrier function. The health-promoting effects of Bacteroides species are relatively recently discovered with the findings of excreted immunomodulatory molecules. These promising, unconventional probiotics could be a part of biotherapeutic strategies in the future.


Author(s):  
Zachary M Slifer ◽  
B Radha Krishnan ◽  
Jay Madan ◽  
Anthony T Blikslager

Larazotide acetate (LA) is a single-chain peptide of eight amino acids that acts as a tight junction regulator to restore intestinal barrier function. LA is currently being studied in phase 3 clinical trials and is orally administered to adult patients with celiac disease as an adjunct therapeutic to enhance intestinal barrier function that has been disrupted by gliadin-induced immune reactivity. Mechanistically, LA is thought to act as a zonulin antagonist to reduce zonulin-induced increases in barrier permeability and has been associated with the redistribution and rearrangement of tight junction proteins and actin filaments to restore intestinal barrier function. More recently, LA has been linked to inhibition of myosin light chain kinase, which likely reduces tension on actin filaments, thereby facilitating tight junction closure. Small (rodent) and large (porcine) animal studies have been conducted that demonstrate the importance of LA as a tight junction regulatory peptide in conditions other than celiac disease, including collagen-induced arthritis in mice and intestinal ischemic injury in pigs.


2020 ◽  
Vol 98 (1) ◽  
Author(s):  
Jiao Song ◽  
Qinghe Li ◽  
Nadia Everaert ◽  
Ranran Liu ◽  
Maiqing Zheng ◽  
...  

Abstract We investigated the effects of inulin on intestinal barrier function and mucosal immunity in Salmonella enterica serovar Enteritidis (SE)–infected specific pathogen-free (SPF) chickens. SPF chickens (n = 240, 1-d-old) were divided into 4 groups (6 replicates per group, 10 chickens per replicate): a control group (CON) fed a basal diet without inulin supplementation and 3 SE-infected groups fed a basal diet supplemented with inulin 0% (SE group), 0.5% (0.5% InSE group), and 1% (1% InSE group), respectively. At 28 d of age, the chickens in SE-infected groups were orally infected with SE and in CON group were administrated with phosphated-buffered saline (PBS). Intestinal morphology, mucosal immunity, and intestinal barrier function-related gene expression were analyzed at 1- and 3-d post-infection (dpi). SE challenge significantly increased the mucosal gene expression, such as interleukin-1β (IL-1β), lipopolysaccharide-induced tumor necrosis factor factor (LITAF), interferon-γ (IFN-γ), and interleukin-6 (IL-6), and increased serum IFN-γ, secretory IgA (sIgA), and IgG concentration, and significantly decreased the gene expression levels of mucin 2 (MUC2) and claudin-1 at 3 dpi compared with the CON group (P < 0.05). Inulin supplementation improved the expression levels of these immunity- and intestinal barrier function-related genes, increased villus height (VH), and decreased crypt depth (CD) in the duodenum, jejunum, and ileum at 1 and 3 dpi within the SE-challenged groups (P < 0.05). SE challenge significantly increased ileal Toll-like receptor 4 (TLR4) mRNA at 1 and 3 dpi, suppressor of cytokine signaling 3 (SOCS3) mRNA at 1 dpi, and phospho-signal transducer and activator of transcription 3 (p-STAT3) and Janus kinase1 (JAK1) protein expression at 3 dpi compared with the CON group (P < 0.05). Inulin supplementation suppressed p-STAT3 and JAK1 protein expression and promoted ileal TLR4 and SOCS3 mRNA expression at 3 dpi compared with SE group (P < 0.05). In conclusion, inulin alleviated SE-induced gut injury by decreasing the proinflammatory response and enhancing mucosal immunity in chickens.


Sign in / Sign up

Export Citation Format

Share Document