scholarly journals Dominant associations of Ensifer medicae-Medicage polymorpha and Ensifer meliloti-Medicago lupulina in farmland and natural ecosystem

Author(s):  
Mingxing Tang ◽  
Hao Yu Wang ◽  
Xin Qi ◽  
Bao Juan Yuan ◽  
Zhang Bin ◽  
...  

Abstract Aims The nitrogen-fixing rhizobia associated with Medicago polymorpha and M. lupulina in Yunnan, China have been poorly documented. This study aims to analyze the diversity of rhizobia isolated from these two Medicago species and investigate the impact of abiotic (soil properties) and biotic (plant hosts) factors on Medicago-associated rhizobia in this region. Methods 91 rhizobial isolates were characterized by RFLP of 16S rDNA and 16S–23S IGS, BOX-PCR fingerprinting, nodulation assays and phylogeny analyses based on housekeeping and symbiosis genes. The genetic diversity of the rhizobial isolates was assessed by the BOX AIR pattern and Shannon index. Additionally, the correlation of soil properties and rhizobial distribution was determined by the constrained analysis of principle coordinates (CAP) based on Bray-Curtis distance of presence/absence (PA) transformed species data. Results All the tested strains fell in the genus Ensifer and divided into two species, E. medicae and E. meliloti. Both host plants and soil properties contributed to the rhizobial diversity. For either E. meliloti or E. medicae, isolates from native host plants tended to be more genetically diverse than those of the same species from non-native hosts. The soil edaphic factor analysis elucidated that nitrogen, organic matter as well as Ca2+ and Na+ are the key factors to shape the biogeographical distribution of rhizobia. Conclusions This study evidenced the microsymbiont preference of M. polymorpha to E. medicae and M. lupulina to E. meliloti, but also revealed the considerable impacts of both plant hosts and soil factors on the rhizobial diversity and biodistribution.

Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 455
Author(s):  
Rebecca M. Swab ◽  
Nicola Lorenz ◽  
Nathan R. Lee ◽  
Steven W. Culman ◽  
Richard P. Dick

After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.


Author(s):  
Yoshihiro Tomizawa ◽  
Shunya Kurokawa ◽  
Daiki Ishii ◽  
Katsuma Miyaho ◽  
Chiharu Ishii ◽  
...  

Abstract Background The antibacterial effects of psychotropics may be part of their pharmacological effects when treating depression. However, limited studies have focused on gut microbiota in relation to prescribed medication. Method We longitudinally investigated the relationship between patients’ prescribed medications and intestinal bacterial diversity in a naturalistic treatment course for patients with major depressive disorders and anxiety disorders. Patients were recruited and their stool was collected at 3 time points during their usual psychiatric treatments. Gut microbiota were analyzed using 16S rRNA gene sequencing. We examined the impact of psychotropics (i.e., antidepressants, anxiolytics, antipsychotics) on their gut microbial diversity and functions. Results We collected 246 stool samples from 40 patients. Despite no differences in microbial diversity between medication groups at the baseline, over the course of treatment, phylogenic diversity whole-tree diversity decreased in patients on antipsychotics compared with patients without (P = .027), and beta diversity followed this trend. Based on a fixed-effect model, antipsychotics predicted microbial diversity; the higher doses correlated with less diversity based on the Shannon index and phylogenic diversity whole tree (estimate = −0.00254, SE = 0.000595, P < .0001; estimate = −0.02644, SE = 0.00833, P = .002, respectively). Conclusion Antipsychotics may play a role in decreasing the alpha diversity of the gut microbiome among patients with depression and anxiety, and our results indicate a relationship with medication dosage. Future studies are warranted and should consider patients’ types and doses of antipsychotics in order to further elucidate the mechanisms of gut-brain interactions in psychiatric disorders.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Hadi Sohrabi ◽  
Meghdad Jourgholami ◽  
Mohammad Jafari ◽  
Farzam Tavankar ◽  
Rachele Venanzi ◽  
...  

Soil damage caused by logging operations conducted to obtain and maximize economic benefits has been established as having long-term effects on forest soil quality and productivity. However, a comprehensive study of the impact of logging operations on earthworms as a criterion for soil recovery has never been conducted in the Hyrcanian forests of Iran. The aim of this study was to determine the changes in soil biological properties (earthworm density and biomass) and its recovery process under the influence of traffic intensity, slope and soil depth in various intervals according to age after logging operations. Soil properties were compared among abandoned skid trails with different ages (i.e., 3, 10, 20, and 25 years) and an undisturbed area. The results showed that earthworm density and biomass in the high traffic intensity and slope class of 20–30% at the 10–20 cm depth of the soil had the lowest value compared to the other treatments. Twenty-five years after the logging operations, the earthworm density at soil depth of 0–10 and 10–20 cm was 28.4% (0.48 ind. m−2) and 38.6% (0.35 ind. m−2), which were less than those of the undisturbed area, respectively. Meanwhile, the earthworm biomass at a soil depth of 0–10 and 10–20 cm was 30.5% (2.05 mg m−2) and 40.5% (1.54 mg m−2) less than the values of the undisturbed area, respectively. The earthworm density and biomass were positively correlated with total porosity, organic carbon and nitrogen content, while negatively correlated with soil bulk density and C/N ratio. According to the results, 25 years after logging operations, the earthworm density and biomass on the skid trails were recovered, but they were significantly different with the undisturbed area. Therefore, full recovery of soil biological properties (i.e., earthworm density and biomass) takes more than 25 years. The conclusions of our study reveal that the effects of logging operations on soil properties are of great significance, and our understanding of the mechanism of soil change and recovery demand that harvesting operations be extensively and properly implemented.


2001 ◽  
Vol 17 (suppl) ◽  
pp. S155-S164 ◽  
Author(s):  
Pedro F. C. Vasconcelos ◽  
Amélia P. A. Travassos da Rosa ◽  
Sueli G. Rodrigues ◽  
Elizabeth S. Travassos da Rosa ◽  
Nicolas Dégallier ◽  
...  

A total of 187 different species of arboviruses and other viruses in vertebrates were identified at the Evandro Chagas Institute (IEC) from 1954 to 1998, among more than 10,000 arbovirus strains isolated from humans, hematophagous insects, and wild and sentinel vertebrates. Despite intensive studies in the Brazilian Amazon region, especially in Pará State, very little is known about most of these viruses, except for information on date, time, source, and method of isolation, as well as their capacity to infect laboratory animals. This paper reviews ecological and epidemiological data and analyzes the impact of vector and host population changes on various viruses as a result of profound changes in the natural environment. Deforestation, mining, dam and highway construction, human colonization, and urbanization were the main manmade environmental changes associated with the emergence and/or reemergence of relevant arboviruses, including some known pathogens for humans.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 215
Author(s):  
Liudmila Tripolskaja ◽  
Asta Kazlauskaite-Jadzevice ◽  
Virgilijus Baliuckas ◽  
Almantas Razukas

Ex-arable land-use change is a global issue with significant implications for climate change and impact for phytocenosis productivity and soil quality. In temperate humid grassland, we examined the impact of climate variability and changes of soil properties on 23 years of grass productivity after conversion of ex-arable soil to abandoned land (AL), unfertilized, and fertilized managed grassland (MGunfert and MGfert, respectively). This study aimed to investigate the changes between phytocenosis dry matter (DM) yield and rainfall amount in May–June and changes of organic carbon (Corg) stocks in soil. It was found that from 1995 to 2019, rainfall in May–June tended to decrease. The more resistant to rainfall variation were plants recovered in AL. The average DM yield of MGfert was 3.0 times higher compared to that in the AL. The DM yields of AL and MG were also influenced by the long-term change of soil properties. Our results showed that Corg sequestration in AL was faster (0.455 Mg ha−1 year−1) than that in MGfert (0.321 Mg ha−1 year−1). These studies will be important in Arenosol for selecting the method for transforming low-productivity arable land into MG.


2004 ◽  
Vol 41 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Dieter Stolle ◽  
Peijun Guo ◽  
Gabriel Sedran

This paper analyzes the impact of natural random variation of soil properties on the constitutive modelling of geomaterial behaviour. A theoretical framework for accommodating variation in soil properties is presented. The framework is then used to examine the consequence of parameter variability on stress–strain relations. An important observation is that average soil parameters from a series of tests on small specimens, in which density of the specimens varies randomly, do not necessarily reflect the average constitutive behaviour of soil. Model predictions are shown to be consistent with the experimental data.Key words: random variability, deterministic analysis, soil parameters, constitutive model.


Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


Sign in / Sign up

Export Citation Format

Share Document