scholarly journals Java-Sumatra Niño/Niña and associated regional rainfall variability

Author(s):  
Sang-Ki Lee ◽  
Hosmay Lopez ◽  
Gregory Foltz ◽  
Dongmin Kim ◽  
Sarah Larson ◽  
...  

Abstract A phenomenon referred to here as Java-Sumatra Niño/Niña (JSN or JS Niño/Niña) is characterized by the appearance of warm/cold sea surface temperature anomalies (SSTAs) in the coastal upwelling region off Java-Sumatra in the southeastern equatorial Indian Ocean. JSN develops in July-September and sometimes as a precursor to the Indian Ocean Dipole, but often without corresponding SSTAs in the western equatorial Indian Ocean. Although its spatiotemporal evolution varies considerably between individual events, JSN is essentially an intrinsic mode of variability driven by local atmosphere-ocean positive feedback, and thus does not rely on remote forcing from the Pacific for its emergence. JSN is an important driver of climate variability over the tropical Indian Ocean and the surrounding continents. Notably, JS Niña events developing in July-September project onto the South and Southeast Asian summer monsoons, increasing the probability of heavy rainfall and flooding across the most heavily populated regions of the world.

2012 ◽  
Vol 42 (4) ◽  
pp. 602-627 ◽  
Author(s):  
Laurie L. Trenary ◽  
Weiqing Han

Abstract The relative importance of local versus remote forcing on intraseasonal-to-interannual sea level and thermocline variability of the tropical south Indian Ocean (SIO) is systematically examined by performing a suite of controlled experiments using an ocean general circulation model and a linear ocean model. Particular emphasis is placed on the thermocline ridge of the Indian Ocean (TRIO; 5°–12°S, 50°–80°E). On interannual and seasonal time scales, sea level and thermocline variability within the TRIO region is primarily forced by winds over the Indian Ocean. Interannual variability is largely caused by westward propagating Rossby waves forced by Ekman pumping velocities east of the region. Seasonally, thermocline variability over the TRIO region is induced by a combination of local Ekman pumping and Rossby waves generated by winds from the east. Adjustment of the tropical SIO at both time scales generally follows linear theory and is captured by the first two baroclinic modes. Remote forcing from the Pacific via the oceanic bridge has significant influence on seasonal and interannual thermocline variability in the east basin of the SIO and weak impact on the TRIO region. On intraseasonal time scales, strong sea level and thermocline variability is found in the southeast tropical Indian Ocean, and it primarily arises from oceanic instabilities. In the TRIO region, intraseasonal sea level is relatively weak and results from Indian Ocean wind forcing. Forcing over the Pacific is the major cause for interannual variability of the Indonesian Throughflow (ITF) transport, whereas forcing over the Indian Ocean plays a larger role in determining seasonal and intraseasonal ITF variability.


2017 ◽  
Vol 30 (21) ◽  
pp. 8447-8468 ◽  
Author(s):  
Weiqing Han ◽  
Gerald A. Meehl ◽  
Aixue Hu ◽  
Jian Zheng ◽  
Jessica Kenigson ◽  
...  

Previous studies have investigated the centennial and multidecadal trends of the Pacific and Indian Ocean Walker cells (WCs) during the past century, but have obtained no consensus owing to data uncertainties and weak signals of the long-term trends. This paper focuses on decadal variability (periods of one to few decades) by first documenting the variability of the WCs and warm-pool convection, and their covariability since the 1960s, using in situ and satellite observations and reanalysis products. The causes for the variability and covariability are then explored using a Bayesian dynamic linear model, which can extract nonstationary effects of climate modes. The warm-pool convection exhibits apparent decadal variability, generally covarying with the Indian and Pacific Ocean WCs during winter (November–April) with enhanced convection corresponding to intensified WCs, and the Indian–Pacific WCs covary. During summer (May–October), the warm-pool convection still highly covaries with the Pacific WC but does not covary with the Indian Ocean WC, and the Indian–Pacific WCs are uncorrelated. The wintertime coherent variability results from the vital influence of ENSO decadal variation, which reduces warm-pool convection and weakens the WCs during El Niño–like conditions. During summer, while ENSO decadal variability still dominates the Pacific WC, decadal variations of ENSO, the Indian Ocean dipole, Indian summer monsoon convection, and tropical Indian Ocean SST have comparable effects on the Indian Ocean WC overall, with monsoon convection having the largest effect since the 1990s. The complex causes for the Indian Ocean WC during summer result in its poor covariability with the Pacific WC and warm-pool convection.


2015 ◽  
Vol 28 (2) ◽  
pp. 695-713 ◽  
Author(s):  
Yan Du ◽  
Yuhong Zhang

Abstract This study investigates sea surface salinity (SSS) variations in the tropical Indian Ocean (IO) using the Aquarius/Satelite de Aplicaciones Cientificas-D (SAC-D) and the Soil Moisture and Ocean Salinity (SMOS) satellite data and the Argo observations during July 2010–July 2014. Compared to the Argo observations, the satellite datasets generally provide SSS maps with higher space–time resolution, particularly in the regions where Argo floats are sparse. Both Aquarius and SMOS well captured the SSS variations associated with the Indian Ocean dipole (IOD) mode. Significant SSS changes occurred in the central equatorial IO, along the Java–Sumatra coast, and south of the equatorial IO, due to ocean circulation variations. During the negative IOD events in 2010, 2013, and 2014, westerly wind anomalies strengthened along the equator, weakening coastal upwelling off Java and Sumatra and decreasing SSS. South of the equatorial IO, an anomalous cyclonic gyre changed the tropical circulation, which favored the eastward high-salinity tongue along the equator and the westward low-saline tongue in the south. An upwelling Rossby wave favored the increase of SSS farther to the south. During the positive IOD events in 2011 and 2012, the above-mentioned processes reversed, although the decrease of SSS was weaker in magnitude.


2020 ◽  
pp. 1-50
Author(s):  
Lei Zhang ◽  
Gang Wang ◽  
Matthew Newman ◽  
Weiqing Han

AbstractThe Indian Ocean has received increasing attention for its large impacts on regional and global climate. However, sea surface temperature (SST) variability arising from Indian Ocean internal processes has not been well understood particularly on decadal and longer timescales, and the external influence from the Tropical Pacific has not been quantified. This paper analyzes the interannual-to-decadal SST variability in the Tropical Indian Ocean in observations and explores the external influence from the Pacific versus internal processes within the Indian Ocean using a Linear Inverse Model (LIM). Coupling between Indian Ocean and tropical Pacific SST anomalies (SSTAs) is assessed both within the LIM dynamical operator and the unpredictable stochastic noise that forces the system. Results show that the observed Indian Ocean Basin (IOB)-wide SSTA pattern is largely a response to the Pacific ENSO forcing, although it in turn has a damping effect on ENSO especially on annual and decadal timescales. On the other hand, the Indian Ocean Dipole (IOD) is an Indian Ocean internal mode that can actively affect ENSO; ENSO also has a returning effect on the IOD, which is rather weak on decadal timescale. The third mode is partly associated with the Subtropical Indian Ocean Dipole (SIOD), and it is primarily generated by Indian Ocean internal processes, although a small component of it is coupled with ENSO. Overall, the amplitude of Indian Ocean internally generated SST variability is comparable to that forced by ENSO, and the Indian Ocean tends to actively influence the tropical Pacific. These results suggest that the Indian-Pacific Ocean interaction is a two-way process.


Author(s):  
Jing-Jia Luo

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Climate Science. Please check back later for the full article. The tropical Indian Ocean is unique in several aspects. Unlike the Pacific and the Atlantic Oceans, the Indian Ocean is bounded to the north by a large landmass, the Eurasian continent. The large thermal heat contrast between the ocean in the south and the land in the north induces the world’s strongest monsoon systems in South and East Asia, in response to the seasonal migration of solar radiation. The strong and seasonally reversing surface winds generate large seasonal variations in ocean currents and basin-wide meridional heat transport across the equator. In contrast to the tropical Pacific and the Atlantic, where easterly trade winds prevail throughout the year, westerly winds (albeit with a relatively weak magnitude) blow along the equatorial Indian Ocean, particularly during the boreal spring and autumn seasons, generating the semi-annual Yoshida-Wyrtki eastward equatorial ocean currents. As a consequence of the lack of equatorial upwelling, the tropical Indian Ocean occupies the largest portion of the warm water pool (with Sea Surface Temperature [SST] being greater than 28 °C) on Earth. The massive warm water provides a huge potential energy available for deep convections that significantly affect the weather-climate over the globe. It is therefore of vital importance to discover and understand climate variabilities in the Indian Ocean and to further develop a capability to correctly predict the seasonal departures of the warm waters and their global teleconnections. The Indian Ocean Dipole (IOD) is the one of the recently discovered climate variables in the tropical Indian Ocean. During the development of the super El Niño in 1997, the climatological zonal SST gradient along the equator was much reduced (with strong cold SST anomalies in the east and warm anomalies in the west). The surface westerly winds switched to easterlies, and the ocean thermocline became shallow in the east and deep in the west. These features are reminiscent of what are observed during El Niño years in the Pacific, representing a typical coupled process between the ocean and the atmosphere. The IOD event in 1997 contributed significantly to floods in eastern Africa and severe droughts and bushfires in Indonesia and southeastern Australia. Since the discovery of the 1997 IOD event, extensive efforts have been made to lead the rapid progress in understanding the air-sea coupled climate variabilities in the Indian Ocean; and many approaches, including simple statistical models and comprehensive ocean-atmosphere coupled models, have been developed to simulate and predict the Indian Ocean climate. Essential to the discussion are the ocean-atmosphere dynamics underpinning the seasonal predictability of the IOD, critical factors that limit the IOD predictability (inter-comparison with El Niño-Southern Oscillation [ENSO]), observations and initialization approaches that provide realistic initial conditions for IOD predictions, models and approaches that have been developed to simulate and predict the IOD, the influence of global warming on the IOD predictability, impacts of IOD-ENSO interactions on the IOD predictability, and the current status and perspectives of the IOD prediction at seasonal to multi-annual timescales.


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 395 ◽  
Author(s):  
Seogyeong Kim ◽  
Kyung-Ja Ha ◽  
Ruiqiang Ding ◽  
Jiangping Li

This study examines the decadal change in the relationship between two major Indian Ocean (IO) sea surface temperature patterns, namely the Indian Ocean dipole (IOD) and northern IO and the East Asia summer monsoon (EASM) in the early 2000s. In 1991–1999, the former epoch, the interannual variability of EASM was associated with the IOD-like pattern in the original paper and its relationship weakened in 2000–2016. There are two possible causes for this decadal change; stronger land-sea thermal contrast as a local forcing in latter epoch, which may result in the weakening of the relationship between the IO and the EASM. In addition, the influence of El Niño-southern Oscillation (ENSO) on the western North Pacific subtropical high (WNPSH) could be changed depending on the frequency of ENSO. In the 2000s, the intensity of the low frequency (LF)-type ENSO (42–86 months period) events was weaker compared to the former epoch but that of quasi-biennial (QB)-type ENSO (16–36 months period) remained persistent. This could explain that the QB-type ENSO is remote forcing that modulates the change in the relationship between the tropical IO patterns and EASM in the 2000s.


2002 ◽  
Vol 33 (4) ◽  
pp. 305-318 ◽  
Author(s):  
Lars Hydén

Lesotho is located approximately at latitude 30 degrees south in the interior of Southern Africa. The mesoscale climate is complicated and governed by various weather systems. The inter-annual rainfall variability is great, resulting in low food security, since the growing of crops in the Lesotho Lowlands is almost exclusively rain-fed. Reliable forecasts of austral summer rainfall are thus valuable. Earlier research has shown that the sea surface temperatures (SST) in the Indian Ocean to some extent govern rainfall in Southern Africa. The research presented is part of an on-going project to find suitable oceanographic and meteorological predictors, which can be used in a forecast model for summer rainfall, to be developed later. The first part of this paper investigates the correlation between the average SSTs in the Equatorial Indian Ocean, the Central Indian Ocean, and the Agulhas Gyre, respectively, and rainfall two months later in the Lesotho Lowlands during early austral summer, October until December for the period 1949-1995. No significant correlations have been found, probably because the three ocean areas are too large. In the second part of this paper the monthly SST in 132 grid squares in the Indian Ocean were investigated and found to be correlated with rainfall in the Lesotho Lowlands two months later, October until March. Significant correlations have been found between the SSTs and certain ocean areas and December, January, and February rainfall, respectively. There is significant negative correlation between December rainfall and October SST in an ocean area between Kenya and Somalia across the Indian Ocean to Sumatra. In the area where the Somali Current flows there is also significant correlation between December SST and December rainfall. January rainfall is significantly negatively correlated with November SST in an ocean area, northeast of Madagascar. February rainfall is significantly, but weakly, negatively correlated with SST in a narrow north-south corridor in the Eastern Indian Ocean from the equator down to latitude 40 degrees south.


Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 510-522 ◽  
Author(s):  
Edouard Bard ◽  
Maurice Arnold ◽  
J R Toggweiler ◽  
Pierre Maurice ◽  
Jean-Claude Duplessy

AMS 14C measurements on samples collected in the tropical-equatorial Indian Ocean during the INDIGO program (leg II, 1986) are presented and compared with β-counting results obtained under both INDIGO program and GEOSECS expedition in the Indian Ocean (1978). The most significant observation is a doubling of the bomb-14C inventory and mean penetration depth in the equatorial zone. Based on hydrologic considerations, two hypotheses can be proposed: 1) direct influx of Pacific mid-latitude waters through the Indonesian archipelago and 2) advection and/or mixing with Mode Water from the southern gyre of the Indian Ocean. Results obtained with a general circulation model of the ocean suggest that the influx from the Pacific is important in the upper 300m and that below 500m the bomb-14C budget is dominated by Mode Water advection.


Author(s):  
Neethu Chacko ◽  
M M Ali

This study examines the effect of surface currents on the bulk algorithm calculation of wind stress estimated using the scatterometer data during 2007-2020 in the Indian Ocean. In the study region as a whole the wind stress decreased by 5.4% by including currents into the wind stress equation. The most significant reduction in the wind stress is found along the most energetic regions with strong currents such as Somali Current, Equatorial Jets and Aghulhas retroflection. A highest reduction of 11.5% is observed along the equator where the Equatorial Jets prevail. A sensitivity analysis has been carried out for the study region and for different seasons to assess the relative impact of winds and currents in the estimation of wind stress by changing the winds while keeping the currents constants and vice versa. The inclusion of currents decreased the wind stress and this decrease is prominent when the currents are stronger. This study showed that equatorial Indian Ocean is the most sensitive region where the current can impact on wind stress estimation. The results showed that uncertainties in the wind stress estimations are quite large at regional levels and hence better representation of wind stress incorporating ocean currents should be considered in the ocean/climatic models for accurate air-sea interaction studies.


Sign in / Sign up

Export Citation Format

Share Document