scholarly journals Tribological Behavoiur of Silicon Carbide/ Rice Husk ash Reinforced Al7075 Hybrid Composites Using Optimization Techniques

Author(s):  
Sivasakthivel P S ◽  
R. Sudhakaran

Abstract In this paper, aluminium alloy Al7075 was reinforced with silicon carbide (SiC) particles and rice husk ash to improve hardness and wear resistance. The SiC particulate and rice husk ash composition in composite were taken in five different proportions such as 3%, 6%, 9%, 12% and 15% for % of SiC particulates and 2%, 4%, 6%, 8% and 10% for % of rice husk ash. Nine different compositions to cater the above proportions were fabricated using stir casting technique. Microstructure examination was conducted on the prepared specimen using optical microscope to determine the homogeneity of reinforced particle distribution. The tribological properties were examined by measuring the wear on the prepared specimen using pin on disc apparatus. The input parameters considered were materials factor such as % of SiC and % of rice husk ash and mechanical wear factors such as load applied, speed of rotation and sliding distance. The design of experiment technique, central composite design (CCD) was employed for conducting experiments with different combination of parameters. Empirical relationship was devised to predict wear of the composite specimen in terms of parameters such as % SiC, % of rice husk ash, load applied, speed of rotation and sliding distance. The empirical relations adequacy was tested using Analysis of variance (ANOVA). The direct and interaction effect of input parameters on wear were analyzed which helps to determine the significance of these parameters. Microstructure examinations were conducted to analyze assimilation and uniform distribution of reinforcement particles in prepared composites. Optimization of process parameter was obtained for minimum wear using genetic algorithm.

2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Gaurav Arora ◽  
◽  
Satpal Sharma ◽  

Nowadays, the effect of the rare earth addition on the performance of aluminium matrix composites is a major interest for many researchers. The present research work emphasis is on the study of the effect of praseodymium oxide (rare earth element) addition on the performance of AA6351 hybrid composites. Silicon carbide and rice husk ash in the weight proportions of 6:2 were ball-milled with various weight percentages (0.4%, 0.8%, and 1.2%) of praseodymium oxide to have a consistent microstructure and combined density equivalent to the AA6351 matrix alloy. Further, AA6351 hybrid composites with the ball-milled reinforcement of silicon carbide, rice husk ash, and praseodymium oxide were produced using stir-casting technique. Physical, microstructural, mechanical, and tribological characterization were done to study the impact of praseodymium oxide addition on the developed hybrid composites. An increment of 2.61% in the density, 49.40% in the microhardness, and 19.78% in the ultimate tensile strength was recorded with the incorporation of 1.2 weight percentage of praseodymium oxide in the AA6351 hybrid composites. The wear rate of the developed composites also improved by 32.92% with the addition of praseodymium oxide. The results exhibited a remarkable improvement in the performance of the AA6351 hybrid composites with the addition of rare earth element.


Author(s):  
V Vignesh Kumar ◽  
K Raja ◽  
T Ramkumar ◽  
M Selvakumar ◽  
TS Senthil Kumar

The research article addresses the reciprocating wear behaviour of hybrid AA7075 reinforced with boron carbide and boron nitride through a stir-casting technique. The experiment involved varying wt.% of the secondary particle boron carbide (3, 6 and 9) while boron nitride (3) was kept as constant. The hybrid composites were characterised using scanning electron microscopy coupled with energy dispersive spectroscopy. The hardness and tensile behaviour of the hybrid composites were evaluated. Reciprocating wear behaviour of the hybrid composites were examined using a tribometer by varying the wear parameters such as load and sliding distance. The results revealed that AA7075/6boron carbide/3boron nitride had better hardness, tensile and wear properties. The surface morphology of the wear samples was analysed using SEM.


Author(s):  
Md. Rahat Hossain ◽  
Md. Hasan Ali ◽  
Md. Al Amin ◽  
Md. Golam Kibria ◽  
Md. Shafiul Ferdous

Aluminium matrix composites (AMCs) used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs) such as aluminium alloy (A356) reinforced with rice husk ash particles (RHA) are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356) reinforced with various amounts of (2%, 4%, and 6%) rice husk ash (RHA) particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA) and aluminium matrix composites (AMCs). In future, the optimum percentages of rice husk ash (RHA) to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM) will be applied for further investigation.


2014 ◽  
Vol 608 ◽  
pp. 103-107
Author(s):  
Yutthana Kaewtabut ◽  
Wansika Sirimongkol ◽  
Adisak Thueploy ◽  
Siriphan Nilpairach

Efficiently utilization of rice husk ash (RHA) and waste sludge from cutting glass manufacturer (WSG) as additives to pottery clay would yield positive economic impacts, such as more friendly industrial ecosystems. In this study, The RHA and WSH were used as additives to Angthong pottery clay (APC) and casting and fired properties were examined. Two sets of sample with a mixture consisting of 60% APC, 20% RHA, and 20% WSG (CRG formula) and non-added clay (C100 formula) were prepared by slip casting technique. Samples were fired at temperature 900 °C and 1100°C; then the viscosity of slurry, linear shrinkage, water adsorption, and 3-point bending strength were measured. The results showed that the optimum viscosity for slip casting of CRG and C100 were 1638 cP and 983 cP, respectively. The water adsorptions of all samples decrease while their shrinkage and strength increase with temperature. At 900°C, the water adsorption and the strength of CRG were 32% and 1184 psi, respectively. Comparatively, CRG’s water absorption was 1.5 times higher than C100’s, while their mechanical strength was insignificantly different. This due to the RHA behaves as pore forming and the WSG promotes the sintering of samples.


2018 ◽  
Vol 25 (4) ◽  
pp. 15-22
Author(s):  
Abbas Y. Awad ◽  
Mohammed N. Ibrahim ◽  
Mohamed K. Hussein

A336.0 aluminum alloy used to fabricate hybrid composites using rice husk ash (RHA) and MgO particles as reinforcement. The influence of the particles on the wear behavior of A336.0 aluminum alloy as a matrix that reinforced with MgO and RHA was investigated. Firstly, the rice husk burned at 700°C and then heat treated at 1100°C for 2 hrs. The ash characterized by X-ray florescence and X-ray diffraction. Less than 53 and 125 micron are the particle sizes of MgO and RHA respectively. The hybrid composites manufactured using stir casting method in two steps. A336.0 aluminum alloy reinforced with 4:0, 3:1, 2:2, 1:3 and 0:4 of RHA: MgO with 10 wt% total reinforcement phase. Optical microscope and X-ray diffraction were used to characterize the prepared hybrid composites. Dry sliding wear, hardness, apparent density, percentage of porosity and coefficient of friction were examined. Results indicated that porosity, apparent density and hardness enhanced with increasing MgO, while increasing wt% of RHA decreased the apparent density. Results indicated that with inceasing the applied load the wear rate of the composites was enhanced. Coefficient of friction varies inversely with applied load and wt% of RHA. Hardness increased with increasing RHA while the friction coefficient and the wear rate decreased. The minimum wear rates were at 10% RHA and Al-alloy-(RHA-MgO) [3:1] composites, while the minimum friction coefficients were at 10% RHA composites.


Sign in / Sign up

Export Citation Format

Share Document