Remote-Controllable Bone-Targeted Delivery of Estradiol For the Treatment of Ovariectomy-Induced Osteoporosis in Rats

Author(s):  
Dehao Fu ◽  
Yuanyuan Guo ◽  
Yongwei Liu ◽  
Chen Shi ◽  
Tingting Wu ◽  
...  

Abstract BackgroundOsteoporosis (OP) is a systemic skeletal disease marked by bone mass reduction and bone tissue destruction. Hormone replacement therapy is an effective treatment for post-menopausal OP, but estrogen has poor tissue selectivity and severe side effects.ResultsIn this study, we constructed a poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs)-based drug delivery system to co-load 17β estradiol (E2) and iron oxide (Fe3O4) together, modified with alendronate (AL) to achieve bone targeting and realize a magnetically remote-controllable drug release. The NPs were fabricated through the emulsion solvent diffusion method. The particle size was approximately 200 nm while the encapsulation efficiency of E2 was 58.34 ± 9.21%. The NPs were found to be spherical with a homogenous distribution of particle size. The NPs showed good stability, good biocompatibility, high encapsulation ability of E2 and excellent magnetic properties. The NPs could be effectively taken up by Raw 264.7 cells and were effective in enriching drugs in bone tissue. The co-loaded NPs exposed to an external magnetic field ameliorated OVX-induced bone loss through increased BV/TV, decreased Tb.N and Tb.Sp, improved bone strength, increased PINP and OC, and downregulated CTX and TRAP-5b. The haematological index and histopathological analyses displayed the NPs had less side effects on non-skeletal tissues.ConclusionsThis study presented a remote-controlled release system based on bone-targeted multifunctional NPs and a new potential approach to bone-targeted therapy of OP.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuanyuan Guo ◽  
Yongwei Liu ◽  
Chen Shi ◽  
Tingting Wu ◽  
Yongzhi Cui ◽  
...  

Abstract Background Osteoporosis (OP) is a systemic skeletal disease marked by bone mass reduction and bone tissue destruction. Hormone replacement therapy is an effective treatment for post-menopausal OP, but estrogen has poor tissue selectivity and severe side effects. Results In this study, we constructed a poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs)-based drug delivery system to co-load 17β estradiol (E2) and iron oxide (Fe3O4) together, modified with alendronate (AL) to achieve bone targeting and realize a magnetically remote-controllable drug release. The NPs were fabricated through the emulsion solvent diffusion method. The particle size was approximately 200 nm while the encapsulation efficiency of E2 was 58.34 ± 9.21%. The NPs were found to be spherical with a homogenous distribution of particle size. The NPs showed good stability, good biocompatibility, high encapsulation ability of E2 and excellent magnetic properties. The NPs could be effectively taken up by Raw 264.7 cells and were effective in enriching drugs in bone tissue. The co-loaded NPs exposed to an external magnetic field ameliorated OVX-induced bone loss through increased BV/TV, decreased Tb.N and Tb.Sp, improved bone strength, increased PINP and OC, and downregulated CTX and TRAP-5b. The haematological index and histopathological analyses displayed the NPs had less side effects on non-skeletal tissues. Conclusions This study presented a remote-controlled release system based on bone-targeted multifunctional NPs and a new potential approach to bone-targeted therapy of OP. Graphic abstract


2015 ◽  
Vol 33 ◽  
pp. 60-71 ◽  
Author(s):  
Praewpun Boonyasirisri ◽  
Ubonthip Nimmannit ◽  
Pranee Rojsitthisak ◽  
Settapon Bhunchu ◽  
Pornchai Rojsitthisak

Curcuminoids are a mixture of phenolic compounds isolated from Curcuma longa L. (turmeric) rhizomes that possess antioxidant, anti-inflammatory, anti-Alzheimer and anticancer activities. However, curcuminoids have poor solubility in acid and neutral solutions, rapid decomposition in neutral and alkaline solutions, and low bioavailability that limits their use as therapeutic agents. To overcome these problems, statistical design for preparation and characterization of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles as a carrier for curcuminoids was evaluated in this study. The curcuminoid-loaded PLGA nanoparticles were prepared by a modified spontaneous emulsification solvent diffusion method using polyvinyl alcohol (PVA) as a stabilizer. The formulations were optimized using three-factor, three-level Box-Behnken experimental design. The independent variables in the formulations were the lactide/glycolide (LA/GA) molar ratio of PLGA (50:50 to 85:15), the curcuminoid concentration (2%-10%, w/v), and the PVA concentration (3%-7%, w/v). The dependent variables were particle size, loading capacity and entrapment efficiency. Statistical evaluation showed that the LA/GA molar ratio of PLGA and the curcuminoid and PVA concentrations all affected the characteristics of the PLGA nanoparticles. To achieve a minimum particle size and maximum loading capacity and entrapment efficiency, the optimal formulation of the curcuminoid-loaded PLGA nanoparticles had a LA/GA molar ratio of PLGA of 50:50, 10% (w/v) curcuminoids, and 3% (w/v) PVA. A sustainable in vitro release profile of curcuminoids was obtained from this optimal formulation.


Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


2019 ◽  
Vol 9 (3) ◽  
pp. 222-233
Author(s):  
Divya D. Jain ◽  
Namita D. Desai

Background: Adapalene is a promising third generation retinoid used in the topical treatment of acne vulgaris. However, the major drawback associated with conventional topical therapy of Adapalene is the ‘retinoid reaction’ which is dose-dependent and characterized by erythema, scaling and burning sensation at the application sites. Microparticulate drug delivery can play a major role in reducing side effects and providing better patient compliance due to targeted delivery. Methods: Adapalene microparticles were prepared using quasi emulsion solvent diffusion method. The effects of formulation variables including polymer ratios, amounts of emulsifier, drug loading and process variables such as stirring time and speed on the physical characteristics of microparticles were investigated. The developed microparticles were characterized by DSC and SEM. Adapalene microparticles were incorporated into Carbopol 971 NF gel for ease of topical delivery. Results: Adapalene microparticulate topical gel showed sustained drug release over 8 hours in in vitro studies. The amount of drug retained in the rat skin during ex vivo studies was higher in the microparticulate topical gel (227.43 ± 0.83 µg/cm2) as compared to the marketed formulation (81.4 ± 1.11 µg/cm2) after 8 hours indicating localized and sustained drug action that can be useful in treating acne vulgaris. The safety of optimized Adapalene gel determined by skin irritation studies performed on Sprague Dawley rats showed no irritation potential. Conclusion: Microparticles can provide promising carrier systems to deliver Adapalene, improving patient compliance due to enhanced skin deposition, localized and sustained action with reduced associated irritant effects.


2021 ◽  
Vol 11 (6) ◽  
pp. 2493
Author(s):  
Karol Kirstein ◽  
Michalina Horochowska ◽  
Jacek Jagiełło ◽  
Joanna Bubak ◽  
Aleksander Chrószcz ◽  
...  

The bone tissue destruction during drilling is still one of the crucial problems in implantology. In this study, the influence of drilling speed, coolant presence, and its temperature on bone tissue was tested using swine rib as a biological model of human jaws. The same method of drilling (with or without coolant) was used in all tested samples. The microscopic investigation estimated the size of the destruction zone and morphology of bone tissue surrounding the drilling canal. The achieved results were statistically elaborated. The study proved that the optimal drilling speed was ca. 1200 rpm, but the temperature of the used coolant had no significant influence on provoked bone destruction. Simultaneously, the drilling system without coolant compared to this with coolant has statistical importance on drilling results. Further in vivo studies will verify the obtained results.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Sultan Alshehri ◽  
Syed Sarim Imam ◽  
Md Rizwanullah ◽  
Khalid Umar Fakhri ◽  
Mohd Moshahid Alam Rizvi ◽  
...  

In the present study, thymoquinone (TQ)-encapsulated chitosan- (CS)-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were formulated using the emulsion evaporation method. NPs were optimized by using 33-QbD approach for improved efficacy against breast cancer. The optimized thymoquinone loaded chitosan coated Poly (d,l-lactide-co-glycolide) nanoparticles (TQ-CS-PLGA-NPs) were successfully characterized by different in vitro and ex vivo experiments as well as evaluated for cytotoxicity in MDA-MB-231 and MCF-7 cell lines. The surface coating of PLGA-NPs was completed by CS coating and there were no significant changes in particle size and entrapment efficiency (EE) observed. The developed TQ-CS-PLGA-NPs showed particle size, polydispersibility index (PDI), and %EE in the range between 126.03–196.71 nm, 0.118–0.205, and 62.75%–92.17%. The high and prolonged TQ release rate was achieved from TQ-PLGA-NPs and TQ-CS-PLGA-NPs. The optimized TQ-CS-PLGA-NPs showed significantly higher mucoadhesion and intestinal permeation compared to uncoated TQ-PLGA-NPs and TQ suspension. Furthermore, TQ-CS-PLGA-NPs showed statistically enhanced antioxidant potential and cytotoxicity against MDA-MB-231 and MCF-7 cells compared to uncoated TQ-PLGA-NPs and pure TQ. On the basis of the above findings, it may be stated that chitosan-coated TQ-PLGA-NPs represent a great potential for breast cancer management.


2014 ◽  
Vol 88 (2) ◽  
pp. 529-538 ◽  
Author(s):  
Chuda Chittasupho ◽  
Kriengsak Lirdprapamongkol ◽  
Prartana Kewsuwan ◽  
Narong Sarisuta

2013 ◽  
Vol 813 ◽  
pp. 399-402
Author(s):  
Chimsook Thitipha ◽  
Thitiphan Chimsook

The aim of present work was to prepare floating microsphere of ketoprofen using matrix polymer of chitosan and poly (ethylene glycol) by solvent diffusion method. The floating microsphere of ketoprofen was prepared from matrix polymer of chitosan and poly (ethylene glycol) with various composition ratios and evaluated such as particle size, drug compatibility and drug release of microspheres. The scanning electron microscopy of microspheres confirmed their hollow structures with smooth surface. Formulation CPK 4 to CPK 6 exhibited the best controlled release pattern in ketoprofen. The concentration and size of poly (ethylene-glycol) affected the particle size, percentage yield and drug release of microspheres.


Sign in / Sign up

Export Citation Format

Share Document