scholarly journals Isolation of High Quality RNA for High Throughput Applications From Secondary Metabolite Rich Crocus Sativus L

Author(s):  
Zubair Ahmad Wani ◽  
Umer Majeed Wani ◽  
Aabid M Koul ◽  
Asif Amin ◽  
Basit Amin Shah ◽  
...  

Abstract Isolating high quality RNA is a basic requirement while performing high throughput sequencing, microarray and various other molecular investigations. However, it has been quite challenging to isolate RNA with absolute purity from plants like Crocus sativus that are rich in secondary metabolites, polysaccharides and other interfering compounds which often irreversibly co-precipitate with the RNA. While many methods have been proposed for RNA extraction that include CTAB, TriZol, SDS based methods, they invariably yield less and poor quality RNA. In the present study we made certain changes in the available protocols including modifications in the extraction buffer and procedure viz-a-viz solutions used for precipitation of RNA. Our method led to the isolation of clear and non-dispersive total RNA with an RNA Integrity Number (RIN) greater than 7.5. The quality of the RNA was further assessed by qPCR based amplification of mature miRNAs such as Cs-MIR166c and Cs- MIR396a. In conclusion, the study describes an efficient method of RNA extraction that is highly ideal for high throughput sequencing of small RNAs.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Amaranatha R. Vennapusa ◽  
Impa M. Somayanda ◽  
Colleen J. Doherty ◽  
S. V. Krishna Jagadish

Abstract Using existing protocols, RNA extracted from seeds rich in starch often results in poor quality RNA, making it inappropriate for downstream applications. Though some methods are proposed for extracting RNA from plant tissue rich in starch and other polysaccharides, they invariably yield less and poor quality RNA. In order to obtain high yield and quality RNA from seeds and other plant tissues including roots a modified SDS-LiCl method was compared with existing methods, including TRIZOL kit (Invitrogen), Plant RNeasy mini kit (Qiagen), Furtado (2014) method, and CTAB-LiCl method. Modifications in the extraction buffer and solutions used for RNA precipitation resulted in a robust method for extracting RNA in seeds and roots, where extracting quality RNA is challenging. The modified SDS-LiCl method revealed intense RNA bands through gel electrophoresis and a nanodrop spectrophotometer detected ratios of ≥ 2 and 1.8 for A260/A230 and A260/A280, respectively. The absence of starch co-precipitation during RNA extraction resulted in enhanced yield and quality of RNA with RIN values of 7–9, quantified using a bioanalyzer. The high-quality RNA obtained was demonstrated to be suitable for downstream applications, such as cDNA synthesis, gene amplification, and RT-qPCR. The method was also effective in extracting RNA from seeds of other cereals including field-grown sorghum and corn. The modified SDS-LiCl method is a robust and highly reproducible RNA extraction method for plant tissues rich in starch and other secondary metabolites. The modified SDS-LiCl method successfully extracted high yield and quality RNA from mature, developing, and germinated seeds, leaves, and roots exposed to different abiotic stresses.


2019 ◽  
Vol 10 ◽  
Author(s):  
Ana Cláudia Silva ◽  
Virginia Ruiz-Ferrer ◽  
Ángela Martínez-Gómez ◽  
Marta Barcala ◽  
Carmen Fenoll ◽  
...  

2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Danielle M DeLeo ◽  
Jorge L Pérez-Moreno ◽  
Hernán Vázquez-Miranda ◽  
Heather D Bracken-Grissom

Abstract High-quality RNA is an important precursor for high-throughput RNA sequencing (RNAseq) and subsequent analyses. However, the primary metric used to assess RNA quality, the RNA Integrity Number (RIN), was developed based on model bacterial and vertebrate organisms. Though the phenomenon is not widely recognized, invertebrate 28S ribosomal RNA (rRNA) is highly prone to a form of denaturation known as gap deletion, in which the subunit collapses into two smaller fragments. In many nonmodel invertebrates, this collapse of the 28S subunit appears as a single band similar in size to the 18S rRNA subunit. This phenomenon is hypothesized to be commonplace among arthropods and is often misinterpreted as a “degraded” rRNA profile. The limited characterization of gap deletion in arthropods, a highly diverse group, as well as other nonmodel invertebrates, often biases RNA quality assessments. To test whether the collapse of 28S is a general pattern or a methodological artifact, we sampled more than half of the major lineages within Arthropoda. We found that the 28S collapse is present in ∼90% of the species sampled. Nevertheless, RNA profiles exhibit considerable diversity with a range of banding patterns. High-throughput RNAseq and subsequent assembly of high-quality transcriptomes from select arthropod species exhibiting collapsed 28S subunits further illustrates the limitations of current RIN proxies in accurately characterizing RNA quality in nonmodel organisms. Furthermore, we show that this form of 28S denaturation, which is often mistaken for true “degradation,” can occur at relatively low temperatures.


Author(s):  
Nur Atheeqah-Hamzah ◽  
Christina Seok Yien Yong ◽  
Umi Kalsom Yusuf

Hibiscus sabdariffa L. is no stranger to the field of pharmacology, as its calyx extract is highly rich in beneficial compounds and has been demonstrated to possess antihyperglycemic, antihypertension, anticancer and antioxidant properties. Thus, it is labeled it as a functional food with great health benefits and therapeutic potentials. The medicinal and nutritional components of the calyx are well reported. On the contrary, not much is known about the molecular machineries governing the biosynthesis of beneficial compounds in this plant. Obtaining good yields of high-quality RNA is crucial for the success of downstream research pertaining to molecular biology. However, the presence of high quantities of phenolic compounds, polysaccharides, mucilage and pectin in the fibrous calyx tissue poses major challenges for RNA extraction in H. sabdariffa. Here, we modified a CTAB-based method for efficient extraction of high-quality RNA from the calyx tissue. High quality RNA samples having RNA integrity number of more than eight were successfully extracted. The purities of RNA samples were also confirmed by the A260/280 and A260/230 values. Subsequent successful preparation of a sequencing library using one of the RNA samples extracted via the modified CTAB method further emphasized the efficiency of this extraction protocol and quality of the RNA samples. The results showed that the modified CTAB method was effective in extracting good quality RNA from the challenging calyx tissue of Hibiscus sabdariffa L. suitable for sensitive downstream application.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Rachelle Bester ◽  
Glynnis Cook ◽  
Johannes H. J. Breytenbach ◽  
Chanel Steyn ◽  
Rochelle De Bruyn ◽  
...  

Abstract Background High-throughput sequencing (HTS) has been applied successfully for virus and viroid discovery in many agricultural crops leading to the current drive to apply this technology in routine pathogen detection. The validation of HTS-based pathogen detection is therefore paramount. Methods Plant infections were established by graft inoculating a suite of viruses and viroids from established sources for further study. Four plants (one healthy plant and three infected) were sampled in triplicate and total RNA was extracted using two different methods (CTAB extraction protocol and the Zymo Research Quick-RNA Plant Miniprep Kit) and sent for Illumina HTS. One replicate sample of each plant for each RNA extraction method was also sent for HTS on an Ion Torrent platform. The data were evaluated for biological and technical variation focussing on RNA extraction method, platform used and bioinformatic analysis. Results The study evaluated the influence of different HTS protocols on the sensitivity, specificity and repeatability of HTS as a detection tool. Both extraction methods and sequencing platforms resulted in significant differences between the data sets. Using a de novo assembly approach, complemented with read mapping, the Illumina data allowed a greater proportion of the expected pathogen scaffolds to be inferred, and an accurate virome profile was constructed. The complete virome profile was also constructed using the Ion Torrent data but analyses showed that more sequencing depth is required to be comparative to the Illumina protocol and produce consistent results. The CTAB extraction protocol lowered the proportion of viroid sequences recovered with HTS, and the Zymo Research kit resulted in more variation in the read counts obtained per pathogen sequence. The expression profiles of reference genes were also investigated to assess the suitability of these genes as internal controls to allow for the comparison between samples across different protocols. Conclusions This study highlights the need to measure the level of variation that can arise from the different variables of an HTS protocol, from sample preparation to data analysis. HTS is more comprehensive than any assay previously used, but with the necessary validations and standard operating procedures, the implementation of HTS as part of routine pathogen screening practices is possible.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Michal Kucharski ◽  
Jaishree Tripathi ◽  
Sourav Nayak ◽  
Lei Zhu ◽  
Grennady Wirjanata ◽  
...  

Abstract Background Sequencing technology advancements opened new opportunities to use transcriptomics for studying malaria pathology and epidemiology. Even though in recent years the study of whole parasite transcriptome proved to be essential in understanding parasite biology there is no compiled up-to-date reference protocol for the efficient generation of transcriptome data from growing number of samples. Here, a comprehensive methodology on how to preserve, extract, amplify, and sequence full-length mRNA transcripts from Plasmodium-infected blood samples is presented that can be fully streamlined for high-throughput studies. Results The utility of various commercially available RNA-preserving reagents in a range of storage conditions was evaluated. Similarly, several RNA extraction protocols were compared and the one most suitable method for the extraction of high-quality total RNA from low-parasitaemia and low-volume blood samples was established. Furthermore, the criteria needed to evaluate the quality and integrity of Plasmodium RNA in the presence of human RNA was updated. Optimization of SMART-seq2 amplification method to better suit AT-rich Plasmodium falciparum RNA samples allowed us to generate high-quality transcriptomes from as little as 10 ng of total RNA and a lower parasitaemia limit of 0.05%. Finally, a modified method for depletion of unwanted human haemoglobin transcripts using in vitro CRISPR-Cas9 treatment was designed, thus improving parasite transcriptome coverage in low parasitaemia samples. To prove the functionality of the pipeline for both laboratory and field strains, the highest  2-hour resolution RNA-seq transcriptome for P. falciparum 3D7 intraerythrocytic life cycle available to  date was generated, and the entire protocol was applied to create the largest transcriptome data from Southeast Asian field isolates. Conclusions Overall, the presented methodology is an inclusive pipeline for generation of good quality transcriptomic data from a diverse range of Plasmodium-infected blood samples with varying parasitaemia and RNA inputs. The flexibility of this pipeline to be adapted to robotic handling will facilitate both small and large-scale future transcriptomic studies in the field of malaria.


F1000Research ◽  
2014 ◽  
Vol 2 ◽  
pp. 217 ◽  
Author(s):  
Guillermo Barturen ◽  
Antonio Rueda ◽  
José L. Oliver ◽  
Michael Hackenberg

Whole genome methylation profiling at a single cytosine resolution is now feasible due to the advent of high-throughput sequencing techniques together with bisulfite treatment of the DNA. To obtain the methylation value of each individual cytosine, the bisulfite-treated sequence reads are first aligned to a reference genome, and then the profiling of the methylation levels is done from the alignments. A huge effort has been made to quickly and correctly align the reads and many different algorithms and programs to do this have been created. However, the second step is just as crucial and non-trivial, but much less attention has been paid to the final inference of the methylation states. Important error sources do exist, such as sequencing errors, bisulfite failure, clonal reads, and single nucleotide variants.We developed MethylExtract, a user friendly tool to: i) generate high quality, whole genome methylation maps and ii) detect sequence variation within the same sample preparation. The program is implemented into a single script and takes into account all major error sources. MethylExtract detects variation (SNVs – Single Nucleotide Variants) in a similar way to VarScan, a very sensitive method extensively used in SNV and genotype calling based on non-bisulfite-treated reads. The usefulness of MethylExtract is shown by means of extensive benchmarking based on artificial bisulfite-treated reads and a comparison to a recently published method, called Bis-SNP.MethylExtract is able to detect SNVs within High-Throughput Sequencing experiments of bisulfite treated DNA at the same time as it generates high quality methylation maps. This simultaneous detection of DNA methylation and sequence variation is crucial for many downstream analyses, for example when deciphering the impact of SNVs on differential methylation. An exclusive feature of MethylExtract, in comparison with existing software, is the possibility to assess the bisulfite failure in a statistical way. The source code, tutorial and artificial bisulfite datasets are available at http://bioinfo2.ugr.es/MethylExtract/ and http://sourceforge.net/projects/methylextract/, and also permanently accessible from 10.5281/zenodo.7144.


2018 ◽  
Author(s):  
M Grinstein ◽  
HL Dingwall ◽  
RR Shah ◽  
TD Capellini ◽  
JL Galloway

AbstractBackgroundMechanistic understanding of tendon molecular and cellular biology is crucial towards furthering our abilities to design new therapies for tendon and ligament injuries and disease. Recent transcriptomic and epigenomic studies in the field have harnessed the power of mouse genetics to reveal new insights into tendon biology. However, many mouse studies pool tendon tissues or use amplification methods to perform RNA analysis, which can significantly increase the experimental costs and limit the ability to detect changes in expression of low copy transcripts.MethodsSingle Achilles tendons were harvested from uninjured, contralateral injured, and wild type mice between 3-5 months of age, and RNA was extracted. RNA Integrity Number (RIN) and concentration were determined, and RT-qPCR gene expression analysis was performed.ResultsAfter testing several RNA extraction approaches on single adult mouse Achilles tendons, we developed a protocol that was successful at obtaining high RIN and sufficient concentrations suitable for RNA analysis. We found that the RNA quality was sensitive to the time between tendon harvest and homogenization, and the RNA quality and concentration was dependent on the duration of homogenization. Using this method, we demonstrate that analysis of Scx gene expression in single mouse tendons reduces the biological variation caused by pooling tendons from multiple mice. We also show successful use of this approach to analyze Sox9 and Col1a2 gene expression changes in injured compared with uninjured control tendons.DiscussionOur work presents a robust, cost-effective, and straightforward method to extract high quality RNA from a single adult mouse Achilles tendon at sufficient amounts for RNA-seq and RT-qPCR. We show this can reduce biological variation and decrease the overall costs associated with experiments. This approach can also be applied to other skeletal tissues as well as precious human samples.


2019 ◽  
Vol 63 (4) ◽  
pp. 471-479
Author(s):  
Anna Orłowska ◽  
Ewelina Iwan ◽  
Marcin Smreczak ◽  
Jerzy Rola

AbstractIntroductionHigh-throughput sequencing (HTS) identifies random viral fragments in environmental samples metagenomically. High reliability gains it broad application in virus evolution, host-virus interaction, and pathogenicity studies. Deep sequencing of field samples with content of host genetic material and bacteria often produces insufficient data for metagenomics and must be preceded by target enrichment. The main goal of the study was the evaluation of HTS for complete genome sequencing of field-case rabies viruses (RABVs).Material and MethodsThe material was 23 RABVs isolated mainly from red foxes and one European bat lyssavirus-1 isolate propagated in neuroblastoma cells. Three methods of RNA isolation were tested for the direct metagenomics and RABV-enriched approaches. Deep sequencing was performed with a MiSeq sequencer (Illumina) and reagent v3 kit. Bioinformatics data were evaluated by Kraken and Centrifuge software and de novo assembly was done with metaSPAdes.ResultsTesting RNA extraction procedures revealed the deep sequencing scope superiority of the combined TRIzol/column method. This HTS methodology made it possible to obtain complete genomes of all the RABV isolates collected in the field. Significantly greater rates of RABV genome coverages (over 5,900) were obtained with RABV enrichment. Direct metagenomic studies sequenced the full length of 6 out of 16 RABV isolates with a medium coverage between 1 and 71.ConclusionDirect metagenomics gives the most realistic illustration of the field sample microbiome, but with low coverage. For deep characterisation of viruses, e.g. for spatial and temporal phylogeography during outbreaks, target enrichment is recommended as it covers sequences much more completely.


2020 ◽  
Author(s):  
Tomasz Kowalski ◽  
Szymon Grabowski

AbstractMotivationFASTQ remains among the widely used formats for high-throughput sequencing data. Despite advances in specialized FASTQ compressors, they are still imperfect in terms of practical performance tradeoffs.ResultsWe present a multi-threaded version of Pseudogenome-based Read Compressor (PgRC), an in-memory algorithm for compressing the DNA stream, based on the idea of building an approximation of the shortest common superstring over high-quality reads. The current version, v1.2, practically preserves the compression ratio and decompression speed of the previous one, reducing the compression time by a factor of about 4–5 on a 6-core/12-thread machine.AvailabilityPgRC 1.2 can be downloaded from https://github.com/kowallus/[email protected]


Sign in / Sign up

Export Citation Format

Share Document