scholarly journals Solar Energy Implementation At Household: Gaza Strip Case Study

Author(s):  
Hala J. El-Khozondar ◽  
Fady El-batta

Abstract Background: Gaza Strip in Palestine is facing a major power deficiency problem due to local political situation. Thus, powering Gaza Strip without blockage whole day is a challenging task for decision maker. Lack of electrical power required inhabitants of Gaza Strip to implement solar energy systems to power their homes to replace or to complement the traditional sources of energy. To understand the success of solar system adoption at household in Gaza, authors built an electronic questionnaire. The dependent variable is chosen to be the adoption of energy and independent variables are environmental benefit, the cost of adoption of solar energy, and the market value of solar energy measured. The electronic questionnaire consists of two parts: part one consists of personal questions; second part is 22 items on a five- point Likert scale. The study sample consists of the 10% of the study population which are Al-Shifa Medical Complex employees (1819 employees). The electronic questionnaires are electronically circulated to the study sample. Then data is collected and analyzed using SPSS program. Results: The authors found that only 19.5% of the sample install solar energy systems on their houses. The results show that some factor including governorate in which employees are living, house ownership, total cost of energy/month, space to install the space to install the solar panels, and the desire to share the cost with neighbor unaffected the decision to use solar energy. Contrary, the type of house, knowledge of renewable energy impacted the decision. Conclusion: The adoption of solar energy in Gaza is limited. Type of house and knowledge of renewable energy are important to spread using of solar energy at houses in Gaza. Therefore, it is important to spread the knowledge of solar energy through universities by giving classes to all university students or by giving general lecture. To overcome the other two factors, the government should adopt the system and support the local inhabitants.

2018 ◽  
Vol 67 ◽  
pp. 04011
Author(s):  
Sunaryo Sunaryo ◽  
Adri Wirawan Ramadhani

Indonesia has more than 17,000 islands and has plenty of beautiful beaches and underwater spots which have great potential for maritime tourism. Tourism was ranked 3rd on Indonesia's foreign income and plays an important role for the country’s ecomony. Despite having potential advantages, the government has not yet maximized its efforts to develop the attractiveness of its maritime tourism. Beside the beautiful spots Indonesia is also blessed with all year long sun shine, which could be tapped as renewable and green energy as substitution to fossil fuel. Refer to these great advantages of natural resources the research was aimed to support the government’s program in developing its maritime tourism and to promote the use of green and renewable energy by designing a solar-powered tourism recreational boat which has 12 meters of length. The paper is focused on the design of solar energy and its electrical system, which includes conversion of solar energy to electrical energy and store it in the battery, the required electrical power is also predicted based on the appliances and equipment installed in the boat, the optimum attachment of solar panels on the boat structure is also calculated. All the methods and information we use are obtained from literature study, discussion with experts, and surveys to Jagur as solar-powered electric boat from Universitas Indonesia.


2022 ◽  
Vol 11 (1) ◽  
pp. 1-13
Author(s):  
Md. Tawhidul Islam ◽  
Md. Elias Hossain

Bangladesh is the most densely populated country in the world. With a total population of around 165 million, the country has constantly been facing food security challenges and other problems. Therefore, increasing food production is one of the feasible solutions to this challenge, and proper agricultural land use for food production bears critical importance. Adopting sustainable irrigation systems and viable technologies would be vital for ensuring efficient use of agricultural land in Bangladesh to safeguard the country's food security. Solar irrigation pumps (SIPs) can be a reliable option in this regard. However, Bangladesh has experienced a prolonged growth rate of SIP installation in the last decade.  The countryhas set a target to install 10000 SIPs by the year 2027, albeit it is a tiny share of the 1.57 million conventional irrigation pumps operating in the country. This study aims to investigate the economic feasibility of the SIPs operating in the northern region of Bangladesh in terms of estimating financial feasibility and environmental benefits. The study is mainly based on primary data collected from the users of SIPs from two Upazilas of Dinajpur and Rangpur districts. A total of 14 SIPs, categorized into large, medium, and small pumps, are selected randomly from the available SIPs in the study areas. The financial analysis reveals that small SIPs are the most profitable option (20% IRR) for investment. Large SIPs are moderately profitable (10% IRR), and their profitability can be improved (10.50% IRR) by introducing additional uses of solar energy. However, medium SIPs are the worst (5% IRR) option for investment. In the study areas, large and medium SIPs are designed for the 'fees for service model', and small SIPs are designed for the 'fees for ownership model'. It is found that the 'fees for ownership model' is more profitable than the 'fees for service model'. Moreover, the net environmental benefit for all SIPs is found almost equal to the given subsidy for installing them. Also, the net environmental benefit per kilowatt peak (kWp) is highest for the small SIPs. This paper recommends that additional use (e.g., husking, grinding, supply excess electricity to grid, and so on) of solar energy can improve the profitability of investmenton SIPs. Further, the government should continue giving grants for installing SIPs and promote 'fees for ownership model' (small SIPs) for personal use. It would speed up the dissemination rate of SIPs and help increase the country's agricultural production and improve the environmental conditions.


Author(s):  
І. Puhoviy ◽  
М. Makhrov

Problems. Windows in the summer let through a large amount of solar energy into the room, which causes an additional cost of cooling the air by conditioning. It is known that the limit of comfort is the temperature of 26 oC. To reduce the temperature, use air conditioners, which are required 0,3...0,5 kW of electrical power for 10 m2 of housing. The study deals with the capture of solar energy by water and its use for domestic water purposes (DHW). The goal of the research. Experimental verification of patented developments and calculations of hot water quantity obtained per day, energy savings and economic indicators. Methods of implementation. Experiments were conducted on the south window of the room, with water pumping by a pump and periodic measurement of air and water temperatures at the outlet of the system by mercury thermometer. The calculations were performed using the methods developed by the authors. The studies were conducted within three days of November. The temperature inside ranged a room from 19 to 23 °C. The system was operated in circulating mode on a water battery tank located below the absorber. Isolation of the absorber from the side of the room was made of a transparent food film. Research results. Water temperature reached 45 °C per 1,5-2 hours. Water consumption is enhanced by the thermosiphon effect when water moves from the bottom up. On a clear day of spring and autumn, you can heat for 50-70 % more water than the average for the average day of months of the warm season. For preparing DHW with 1 m2 of absorber, it is possible to get 45-50 kW∙h of heat for each month from March to September, taking into account cloudiness. The savings from the use of hot water and from reducing the consumption of electricity in the air conditioner are calculated. Conclusions. The payback period of the system, taking into account the cost of the heat for DHW and electricity savings for an electric air conditioner, is approximately 4-5 years. The cost of the system is close to the cost of a home air conditioner, for a premise with a single window oriented south. To the energy-saving factor, an additional advantage is the environmental friendliness of the system compared to the air conditioner.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Ligan Budi Pratomo ◽  
Nazaruddin Sinaga

Energy use always increases, especially fossil energy. Through the National Energy Policy, the government continues to strive to increase the role of new and renewable energy sources so as to reduce dependence on fossil energy. Solar power generation is a type of renewable energy generator that capable to convert solar energy to electric energy. The main components of solar power generatios are batteries, solar panels, charger controllers, and inverters.  Solar power generations technology itself is always being developed, such as automatic monitoring and sun tracking systems designed to improve system performance. One of the applications of solar power generations is in the household sector. In this sector consumes 49% of the national electricity energy in 2018. This type of generator is categorized as a roof solar power generations. Based on existing data, there were 1400  roof solar power generations users in September 2019. The development of solar energy utilization for the household sector is very appropriate because it can help achieve renewable energy about 23% in 2025 and 31% in 2050 in the national energy mix.


2021 ◽  
Vol 13 ◽  
Author(s):  
Shreya Srivastava ◽  
Ajit Behera ◽  
Ramakrishna Biswal

: A sustainable energy production system fulfills its goal while being environmentally, socially, and technically sound. The intermittent availability and viability of renewable energy makes this vision a gradual and long-suffering process. In the rapid result-oriented economy, concerns regarding the environment are treated with desperate solutions that may add fuel to the fire. Although substantial research has been going on in the development of emerging technologies and refinement of established systems, we need to be reminded of the larger goal in mind: a benign and sustainable environment. Closing a door on a problem and not opening several new ones is what we must yearn to achieve. Renewable energy systems and their utility may unintentionally harm a different subset of the ecosystem. Solar energy systems are a more recent candidate with a high annual growth rate and thus, are still in the nascent stage to realise the bruised potential of the technology. By 2050, 60 million tons of solar waste will be produced if it is not resolved efficiently. To achieve environmental sustainability, it is imperative to work towards recycling redundant systems, establishing producer responsibility, fulfilling social needs and optimising future technology. By integrating aspects of the research on solar energy systems, their environmental risks, and their potential to create a sustainable ecosystem, this review article attempts to cater to environmental decision making and direct the eventual research and analysis towards their original unified objective.


Author(s):  
Bekhruzi Talbi Shokhzoda ◽  
Mikhail Georgievich Tyagunov

Looking at the history of solar energy and renewable energy in general, the authorities and scientists have been paying much attention to the recent period, due to the depletion of fossil energy resources and the growing difficulties in solving environmental problems. The development of solar energy has led to the use of solar energy concentrators. Concentrators are used to concentrate sunlight onto PV cells. This allows for a reduction in the cell area required for producing a given amount of power. The goal is to significantly reduce the cost of electricity generated by replacing expensive PV converter area with less expensive optical material. In this chapter, the authors talk about concentrators in solar energy, especially about modules based on holographic films. Holographic solar panels (HSP) in recent decades have appeared in large-scale production and been actively used in solar energy. Evaluations of other types of existing concentrators are presented.


Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 9 ◽  
Author(s):  
Nader Nader ◽  
Wael Al-Kouz ◽  
Sameer Al-Dahidi

There is no denial that renewable energy is considered to be the most cost-competitive source of clean power in many parts of the world. Saudi Arabia’s vision 2030 aims at achieving the best by using different sources of renewable energy such as solar energy, wind energy, and others. The use of solar energy in particular for power generation will decrease the dependency on oil, and thus, decrease the greenhouse gasses. Solar panels efficiency tends to decrease with the accumulation of dust on their surface. Thus, a cleaning process requires assigning and employing labor, which increases the cost of running as well as high cost of machinery. The current study focuses on assessing and designing a simple auto self-cleaning system in order to improve the efficiency of the solar panel. The results showed that for the Al-Khobar region, Eastern Province, Kingdom of Saudi Arabia, the efficiency of the solar panels after cleaning was increased from 6% to an average of 12% at nominal temperature of 27 °C. In addition, the average power output was increased by 35% during the day time. In addition, the normal efficiency of the solar panels before cooling was between 10% to 15% at 42 °C. After cooling, the temperature of solar cells decreased to 20 °C and the efficiency increased by 7%. Moreover, the output power was increased by 31% with maximum efficiency of 32% at noon time.


2015 ◽  
Vol 5 (1) ◽  
pp. 4 ◽  
Author(s):  
Clement Ehimika Ohireime Onime ◽  
James Uhomoibhi ◽  
Ermanno Pietrosemoli

It is becoming increasingly important to include information about power generation from renewable energy sources in the training of electrical engineers. Solar energy is arguably the most common renewable energy source in use today. Providing practical hands-on training on solar energy power generation today requires the use of photovoltaic panel devices which are used for transforming solar energy into electrical energy. In many developing countries, practical hands-on training on solar power generation is limited due to the cost of photovoltaic panel devices and so the training consists of theoretical and tutorial classes sometimes supported by remote and virtual laboratories. This paper presents an augmented virtuality tool where real-time information from a mobile device’s sensors is used directly within a virtual or computer generated environment. The tool provides a practical context for hands-on tutorial exercises on solar energy power generation.


2021 ◽  
Author(s):  
Taskin Jamal ◽  
Prof Christopher J. Fogwill ◽  
Ashraf Hossain Bhuiyan

Abstract Beneficiaries prefer renewable energy-based systems over grid-connected electricity. The cost of energy is viewed as the most influential factor while choosing renewable energy systems. Beneficiaries chose to stay linked with renewa­ble energy systems even when they received grid-connected electricity at a lower tariff.Net-metering and feed-in tariff mechanisms, as well as tax cuts and subsidies for renewable energy projects, could be the catalyst for fostering greater uptake of renewables in the electricity generation mix.


Author(s):  
Pushpendra Arya

In today’s world we are going towards the major share of renewable energy to reduce the effect Green House Gases (GHG) in the atmosphere. The limitation of energy sources which produces clean energy, the rise in the pollution in the environment, and programs initiated by the Indian Government have encouraged lots of open field researches on Solar Photovoltaic Systems or Solar Energy Systems. As producing the clean and renewable energy is main component of energy sector, solar photovoltaic could be considered as an alternative in various regions. Although Solar Photovoltaic does have different advantages and can be used for various purposes, but also there are several challenges for it. This paper took a whole overview of the advantages and uses of Solar Photovoltaic and barriers in their adaptation/opportunities.


Sign in / Sign up

Export Citation Format

Share Document