scholarly journals Nitrogen Uptake by Rapeseed Varieties From Organic Matter and Inorganic Fertilizer Sources

Author(s):  
CANDACE G CARTER ◽  
Meagan E. Schipanski

Abstract Aims Improving crop utilization of N from soil organic matter (SOM) has received limited attention despite evidence that half of field crop N is often derived from SOM mineralization. We explored the effects of rapeseed (Brassica napus) genotypic diversity on N uptake from organic and inorganic N sources. Methods In a greenhouse study, we applied dual 15N labeled ammonium-nitrate fertilizer to examine N uptake patterns of rapeseed in different N environments. Ten varieties were grown in a full factorial experiment with four treatments, including combinations of high and low N fertilizer and SOM. Results While we found limited varietal differences in N uptake dynamics, SOM was an important N source across all varieties even as N fertilizer availability increased. High SOM/High Fertilizer treatment plants obtained 64% of N from SOM, while plants grown with High SOM/Low Fertilizer obtained 89% of total N from SOM. High N fertilizer additions increased overall N uptake from SOM by 42% relative to low N fertilizer treatments. In contrast, microbial enzyme activity related to nutrient mineralization was suppressed by 16–58% in high N fertilizer relative to low fertilizer treatments. Conclusions Integrating plant reliance on SOM-N sources into crop breeding and system management has the potential to improve productivity and overall N use efficiency.

2016 ◽  
Vol 155 (2) ◽  
pp. 261-281 ◽  
Author(s):  
S. E. ROQUES ◽  
D. R. KINDRED ◽  
S. CLARKE

SUMMARYTriticale has a reputation for performing well on poor soils, under drought and with reduced inputs, but there has been little investigation of its performance on the better yielding soils dominated by wheat production. The present paper reports 16 field experiments comparing wheat and triticale yield responses to nitrogen (N) fertilizer on high-yielding soils in the UK in harvest years 2009–2014. Each experiment included at least two wheat and at least two triticale varieties, grown at five or six N fertilizer rates from 0 to at least 260 kg N/ha. Linear plus exponential curves were fitted to describe the yield response to N and to calculate economically optimal N rates. Normal type curves with depletion were used to describe protein responses to N. Whole crop samples from selected treatments were taken prior to harvest to measure crop biomass, harvest index, crop N content and yield components. At commercial N rates, mean triticale yield was higher than the mean wheat yield at 13 out of 16 sites; the mean yield advantage of triticale was 0·53 t/ha in the first cereal position and 1·26 t/ha in the second cereal position. Optimal N requirement varied with variety at ten of the 16 sites, but there was no consistent difference between the optimal N rates of wheat and triticale. Triticale grain had lower protein content and lower specific weight than wheat grain. Triticale typically showed higher biomass and straw yields, lower harvest index and higher total N uptake than wheat. Consequently, triticale had higher N uptake efficiency and higher N use efficiency. Based on this study, current N fertilizer recommendations for triticale in the UK are too low, as are national statistics and expectations of triticale yields. The implications of these findings for arable cropping and cereals markets in the UK and Northern Europe are discussed, and the changes which would need to occur to allow triticale to fulfil a role in achieving sustainable intensification are explored.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 859F-859
Author(s):  
Jill C. Larimer ◽  
Dan Struve

ln Spring 1993, red oaks (Quercus rubra) were propagated from seed. From June through October, plants were fertilized twice daily with 1.4 liters of 20N–10P–20K water-soluble fertilizer solution at concentrations of 0, 25, 50, 100, 200, or 400 ppm N. Destructive harvests were conducted six times at intervals from June through Dec. 1993. Leaf area, stem height, root length, root area, and dry weights of roots, stem, and leaves of harvested plants were measured and tissue nutrient concentrations were analyzed. There was no relationship between whole-plant N concentration and total plant biomass (r = 0). However, there were some linear relationships between total plant N and total plant biomass for an individual fertilizer treatment. Biomass allocation between root, stems, and leaves was very consistent across all fertilizer levels at any one harvest. Percent total N in roots, stems, and leaves also was fairly consistent across fertilizer levels. This was true at each harvest, except the first two, in which a greater percentage of total N was partitioned to the leaves and a smaller percentage was partitioned to the roots in the high (100, 200, 400 ppm N) fertilizer treatments. Whole-plant K concentrations increased with increasing fertilizer level, but decreased over time. Whole-plant P concentrations increased linearly with whole-plant dry weight in the higher (100, 200, 400 ppm N) fertilizer treatments.


2013 ◽  
Vol 93 (2) ◽  
pp. 151-160 ◽  
Author(s):  
R. E. Karamanos ◽  
F. C. Stevenson

Karamanos, R. E. and Stevenson, F. C. 2013. Nitrogen fertilizer product and timing alternatives exist for forage production in the Peace region of Alberta. Can. J. Plant Sci. 93: 151–160. Four different N sources [ammonium nitrate (NIT), urea (UR), polymer-coated urea (PCU), and N-(n-butyl) thiophosphoric triamide-treated urea (AGR)] were applied to stands of pure meadow bromegrass (Bromus beibersteinii L.) or a 50:50 smooth bromegrass (Bromus inermis L.)–alfalfa (Medicago sativa L.) mixture in late fall and early spring at four N rates (0, 60, 80 and 100 kg N ha−1) over a 3-yr (2003–2005) period. The N treatments generally increased forage responses, but the response net revenue to N treatment was rarely positive and at times was negative, especially for PCU. On average, PCU resulted in lower yield and protein concentration, lesser N efficiency, and lesser profit relative to other forms of N. This difference was more pronounced in the spring and was less notable at Rycroft, the location with the bromegrass–alfalfa mixture. Also, greater N fertilizer rates increased the yield, protein concentration, total N uptake, and profit for all fertilizer forms. The exceptions to the preceding were N fertilizer rate did not affect forage responses for PCU and at the location with the brome-alfalfa mixture. Urea or AGR provided satisfactory agronomic alternatives to ammonium nitrate when applied in early spring at sufficient rates.


2017 ◽  
Vol 2 (4) ◽  
pp. 624-630 ◽  
Author(s):  
Tahsina Sharmin Hoque ◽  
Farhana Akter ◽  
Md Rafiqul Islam

Green manures can enrich soils with organic matter and nitrogen. An experiment was conducted at the Soil Science Field Laboratory of Bangladesh Agricultural University, Mymensingh, Bangladesh to evaluate the residual effects of different green manures on the growth and yield of wheat (BARI Gom-26). The experiment containing nine treatments were laid out in a randomized complete block design with three replications. The treatments were T1 [No green manure + 100% Recommended dose of nitrogen (RDN)], T2 (Sesbania aculeata + 75% RDN), T3 (Sesbania aculeata + 50% RDN), T4 (Sesbania rostrata + 75% RDN), T5 (Sesbania rostrata + 50% RDN), T6 (Vigna radiata + 75% RDN), T7 (Vigna radiata + 50% RDN), T8 (Vigna mungo + 75% RDN), and T9 (Vigna mungo + 50% RDN). Residual effects of green manures with RDN significantly increased the yield attributes as well as grain and straw yields of wheat. Further, green manures exerted significant residual effects on grain, straw and total N uptake of wheat. Among various treatments with green manures, the performance of T4 (Sesbania rostrata + 75% RDN) was the best as it produced the highest grain yield (4.28 t ha-1), straw yield (4.74 t ha-1) and total N uptake (108.02 kg ha-1). The use of green manures slightly increased the organic matter content, total N and available P, K, and S contents of the post-harvest soils. As regards to the contribution of various green manures on yield contributing characters and yield of wheat, performances of two Sesbania species viz., S. aculeata and S. rostrata in association with 75% N fertilizer were effective.Asian J. Med. Biol. Res. December 2016, 2(4): 624-630


1997 ◽  
Vol 77 (3) ◽  
pp. 345-350 ◽  
Author(s):  
Adrien N'Dayegamiye ◽  
Raynald Royer ◽  
Pierre Audesse

The real contribution of composts to N availability depends on their characteristics and maturity. A laboratory incubation experiment (140 d) was conducted parallel to a greenhouse study (330 d) in a split-split-plot design, with, respectively, two peat rates (0, 20 gkg−1 soil), five manure composts and four compost rates (0, 250, 500 and 750 gkg−1 soil). Compost N mineralization, orchardgrass (Dactylis Glomerata L.) yield and N uptake were measured. Total amount of mineralized N and yields and N uptake for six cuts of orchardgrass varied significantly with the type of composts and rate. Peat addition temporarily decreased compost N mineralization rate but significantly increased orchardgrass yields and N uptake as compared to peatless treatments. Mineralized N represented <3% of total N, whereas N uptake by orchardgrass represented 13–40% of total N among composts. This low mineralized N value compared to total N and total N uptake was due to a high maturity of the composts studied. This was shown by high humic acid: fulvic acid fraction ratios (3.1 to 4.8) and low nonhumic fraction:humic acid+fulvic acid ratios (0.10 to 0.12), as well as low C/N ratios, high bulk density, high ash content, pH, NO3-N and CEC values. Even if peat addition decreased mineralized N basically due to temporary N immobilization, its application significantly increased yields and N uptake probably by improving physical conditions in soil-manure compost mixtures. Peat addition to mature manure composts should be considered as an interesting alternative for horticultural plants sensitive to high NO3-N content from mature composts. Key word: Manure composts, peat, N mineralization, N availability, humification ratios or indexes, yields, orchardgrass


2003 ◽  
Vol 83 (5) ◽  
pp. 497-505 ◽  
Author(s):  
A. N’Dayegamiye ◽  
S. Huard ◽  
Y. Thibault

Mixed paper mill sludges are an important source of N for crop production. An estimate of direct and residual N recovery is necessary for their efficient management. A 3-yr field study (1997-1999) was conducted in central Quebec, Canada, to evaluate mixed paper mill sludges (PMS) effects on corn (Zea mays L.) yields and N nutrition, N recovery and N efficiency. The effects of PMS on soil NO3-N and total N levels were also determined. The study was situated on a silt loam Baudette soil (Humic Gleysol). The treatments included 3 PMS rates (30, 60 and 90 t ha-1 on wet basis) applied alone or in combination with N fertilizer (90 and 135 kg N ha-1, respectively, for 60 and 30 t ha-1). Treatments also included a control without PMS or N fertilizer, and a complete mineral N fertilizer (180 kg N ha-1) as recommended for corn. The previous plots were split beginning with the second year of the experiment, for annual and biennal PMS applications. Similar treatments as above were made on an adjacent site to evaluate N recovery under climatic conditions in 1999. In all years, PMS applied alone significantly increased corn yields by 1.5–5 t ha-1, compared to the unfertilized control. However, corn yields and N uptake were highest from the application of PMS in combination with N fertilizer. Biennial PMS applications at 60 to 90 ha-1 significantly increased corn yields and N uptake, which suggest high PMS residual effect; however, these increases were lower than those obtained with annual PMS applications. The N efficiency varied in 1997 from 13.0 to 15.4 kg grain kg N-1 for mineral N fertilizer and ranged from 3 to 13.7 kg grain kg N-1 for PMS, decreasing proportionally to increasing PMS rates. Apparent N recovery ranged from 1 3 to 19% in 1997 and from 10 to 14% in the residual year (1998), compared to 30 and 49%, respectively, for mineral N fertilizer. Depending on the PMS rate, N recovery varied from 13 to 21% in 1999. The results indicate high N supplying capacity and high r esidual N effects of PMS, which probably influenced corn yields and N nutrition. Annual PMS applications alone or combined with mineral N fertilizer had no significant effect on soil NO3-N and total N levels. This study demonstrates that application of low PMS rate (30 t ha-1) combined with mineral N fertilizer could achieve high agronomic, economic and environmental benefits on farms. Key words: Mixed paper mill sludges, corn yields, N uptake, N efficiency, residual effects, soil N


SoilREns ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Shindy Widiana ◽  
Anni Yunarti ◽  
Emma Trinurani Sofyan ◽  
Dirga Sapta Sara

Shallot (Allium ascalonicum L.) is a horticulture commodity that has a lot of benefits and also prospective due its increasing demand. Annual shallot productivity in Indonesia is unstable due to nutrient degradation on agricultural land, therefore efforts are needed to promote the productivity of shallot. One of the solution using NPK fertilization. This experiment aimed to determine the effect of NPK compound fertilizer on N total, N-uptake, and shallot bulb yield. This research conducted at the Soil Chemical and Plant Nutrition Experiments Field, Faculty of Agriculture, Padjadjaran University, Jatinangor, from February to June 2019. The experimental design used was Randomized Block Design (RBD) consisted of one control treatment, one N, P, K single fertilizer treatment (250 kg ha-1 Urea, 125 kg ha-1 ZA, 200 kg ha-1 SP-36, and 250 kg ha-1 KCl), and eight NPK compound fertilizer treatments in various doses with three replications. The results showed that the NPK compound treatment affected the total N, N uptake, and shallot bulbs yield. Treatment of 75% NPK compound (675 kg ha-1) gave the highest results of fresh bulbs weight at 41.64 g/clump and dry bulbs weight at 25.27 g/clump.


1987 ◽  
Vol 67 (3) ◽  
pp. 521-531 ◽  
Author(s):  
M. GIROUX ◽  
T. SEN TRAN

The objective of this study was to compare several methods of estimating the availability of soil nitrogen to plants. Total soil N, organic matter content, mineralized N during a 2 wk incubation at 35 °C, organic N in 6 N HC1, 0.01 M NaHCO3 and 1 N KCl extracts, and finally mineral N extracted by 2 N KCl were evaluated and contrasted with N uptake by sugar beets cultivated on 19 soils in a greenhouse experiment. The relative yield or plant N uptake gave the highest correlation coefficients when both mineral and organic N fractions in soil extract were considered. The incubation methods gave the best correlation coefficient with relative yield (R2 = 0.85**). N contents in NaHCO3 extract were more correlated with relative yield or N uptake than total N, organic matter contents or N extracted by 6 N HCl or 1 N KCl. The UV absorbance values obtained at 205 nm with 0.01 M NaHCO3 extract were also well correlated with relative yield (R2 = 0.78**) and plant N uptake (R2 = 0.66**). At this wavelength, as well as at 220 nm, the absorbance was affected by mineral and organic N contents in the extract. However, at 260 nm, the UV absorbance was only related to organic N in the extract; consequently these absorbance values were less correlated with relative yield (R2 = 0.49**) or N uptake (R2 = 0.27*). Furthermore, the absorbance measured at 205 nm was too sensitive to NO3-N and organic N concentration and this relationship was not linear in the high-N concentration range. The UV absorbance at 220 nm in the 0.01M NaHCO3 extract seemed to be a promising method to evaluate the availability of soil N. Key words: Soil nitrogen, incubation, ultraviolet absorbance, hydrolyzable nitrogen


2019 ◽  
Vol 99 (2) ◽  
pp. 173-181
Author(s):  
Mehdi Sharifi ◽  
Scott Baker ◽  
Leila Hojabri ◽  
Monireh Hajiaghaei-Kamrani

The co-product of anaerobic digestion, digestate, is nitrogen (N) rich; however, the forms and accessibility of this N by the crops have not been fully explored. This study aimed to determine the mineralization parameters of digestate N and to assess its availability for annual ryegrass (Lolium multiflorum Lam.). Four digestate rates of 0 (control), 38, 75, and 150 mg N kg−1 soil (equal to 0, 90, 180, and 360 kg total N ha−1) were applied to a silty clay loam soil in a completely randomized block design with four replications in a greenhouse study. A 100 d aerobic incubation experiment was also conducted with 0 and 150 mg digestate N kg−1 rates at 25 °C. Digestate feedstock included cattle manure (28%), hay (15%), and silage corn (Zea mays L.; 57%). Total plant biomass and N uptake increased linearly with digestate application rate with average apparent N recovery of 37%. Potentially mineralizable N (N0) and mineralizable N rate constant (k) were not significantly different in digestate and control treatments; however, a flush of digestate organic N (30 mg N kg−1) released right after mixing the digestate with soil. Evidences of N immobilization with digestate application were observed in greenhouse study. Majority of plant-available digestate N was in form of NH4+-N; therefore, NH4+-N can be used for estimation of available digestate N for crops. Results need to be validated for specific feedstock and soil properties under field conditions. Further research is needed to assess how long-term build-up of digestate organic N may impact the N availability for crops.


Author(s):  
Kamran Azeem ◽  
Farah Naz ◽  
Arshad Jalal ◽  
Fernando S. Galindo ◽  
Marcelo C. M. Teixeira Filho ◽  
...  

ABSTRACT Humic acid (HA), as a bio-stimulant and a major component of organic matter (OM), can improve plant physiology, soil fertility, and nutrient availability, mainly in low OM soils. Nitrogen (N) is one of the most important nutrients that affect several metabolic and biochemical activities, leading to improved plant development. This study was conducted to investigate the combined effect of HA and N doses on soil organic matter (SOM) and total N concentration, N uptake, corn growth, and grain yield under conventional tillage at Peshawar, Pakistan. Treatments were tested in a randomized block design with four replicates arranged in a factorial scheme 3 × 4 + 1. The respective doses of HA (1.5, 3,0 and 4.5 kg ha-1) were applied at the corn sowing, whereas N doses (80, 120, 160, and 200 kg ha-1) were applied in three splits (1/3 at sowing, 1/3 at the V5 stage, and remaining 1/3 at the tasselling stage) with one control (no HA and N). The application of HA, regardless of the applied doses, had positive effects on SOM, N concentration, N uptake, corn development, and grain yield. However, the application of 4.5 kg ha-1 of HA was the most effective in promoting SOM (0.83%) and total N (0.31%), shoot biomass (10610 kg ha-1), N uptake (1.13%), and grain yield (3780 kg ha-1), even when combined with the N doses of 80, 120 and 160 kg N ha-1. Increasing N doses positively influenced SOM, N concentration, N uptake, and corn growth. The greatest grain yield was obtained at 150 kg ha-1 of N regardless of HA applied doses.


Sign in / Sign up

Export Citation Format

Share Document