Nitrogen fertilizer product and timing alternatives exist for forage production in the Peace region of Alberta

2013 ◽  
Vol 93 (2) ◽  
pp. 151-160 ◽  
Author(s):  
R. E. Karamanos ◽  
F. C. Stevenson

Karamanos, R. E. and Stevenson, F. C. 2013. Nitrogen fertilizer product and timing alternatives exist for forage production in the Peace region of Alberta. Can. J. Plant Sci. 93: 151–160. Four different N sources [ammonium nitrate (NIT), urea (UR), polymer-coated urea (PCU), and N-(n-butyl) thiophosphoric triamide-treated urea (AGR)] were applied to stands of pure meadow bromegrass (Bromus beibersteinii L.) or a 50:50 smooth bromegrass (Bromus inermis L.)–alfalfa (Medicago sativa L.) mixture in late fall and early spring at four N rates (0, 60, 80 and 100 kg N ha−1) over a 3-yr (2003–2005) period. The N treatments generally increased forage responses, but the response net revenue to N treatment was rarely positive and at times was negative, especially for PCU. On average, PCU resulted in lower yield and protein concentration, lesser N efficiency, and lesser profit relative to other forms of N. This difference was more pronounced in the spring and was less notable at Rycroft, the location with the bromegrass–alfalfa mixture. Also, greater N fertilizer rates increased the yield, protein concentration, total N uptake, and profit for all fertilizer forms. The exceptions to the preceding were N fertilizer rate did not affect forage responses for PCU and at the location with the brome-alfalfa mixture. Urea or AGR provided satisfactory agronomic alternatives to ammonium nitrate when applied in early spring at sufficient rates.

1966 ◽  
Vol 6 (20) ◽  
pp. 42 ◽  
Author(s):  
FC Crofts

Under supplementary spray irrigation at Badgery's Creek, N.S.W., it has been possible to increase the late autumn, winter, and early spring production of a clover dominant ryegrass-clover pasture by more than 3,000 lb of dry matter an acre by sod-seeding oats with nitrogen fertilizers. The oat seeding rate and the amount of nitrogen fertilizer applied at seeding are critical factors in determining the amount of additional winter forage obtained. At this stage it appears that the sod-seeding of oats at four bushels an acre with about 90 lb of nitrogen an acre in early autumn will greatly increase winter forage production under irrigation at a much lower cost than that associated with hand-feeding.


2016 ◽  
Vol 155 (2) ◽  
pp. 261-281 ◽  
Author(s):  
S. E. ROQUES ◽  
D. R. KINDRED ◽  
S. CLARKE

SUMMARYTriticale has a reputation for performing well on poor soils, under drought and with reduced inputs, but there has been little investigation of its performance on the better yielding soils dominated by wheat production. The present paper reports 16 field experiments comparing wheat and triticale yield responses to nitrogen (N) fertilizer on high-yielding soils in the UK in harvest years 2009–2014. Each experiment included at least two wheat and at least two triticale varieties, grown at five or six N fertilizer rates from 0 to at least 260 kg N/ha. Linear plus exponential curves were fitted to describe the yield response to N and to calculate economically optimal N rates. Normal type curves with depletion were used to describe protein responses to N. Whole crop samples from selected treatments were taken prior to harvest to measure crop biomass, harvest index, crop N content and yield components. At commercial N rates, mean triticale yield was higher than the mean wheat yield at 13 out of 16 sites; the mean yield advantage of triticale was 0·53 t/ha in the first cereal position and 1·26 t/ha in the second cereal position. Optimal N requirement varied with variety at ten of the 16 sites, but there was no consistent difference between the optimal N rates of wheat and triticale. Triticale grain had lower protein content and lower specific weight than wheat grain. Triticale typically showed higher biomass and straw yields, lower harvest index and higher total N uptake than wheat. Consequently, triticale had higher N uptake efficiency and higher N use efficiency. Based on this study, current N fertilizer recommendations for triticale in the UK are too low, as are national statistics and expectations of triticale yields. The implications of these findings for arable cropping and cereals markets in the UK and Northern Europe are discussed, and the changes which would need to occur to allow triticale to fulfil a role in achieving sustainable intensification are explored.


2019 ◽  
Vol 5 (2) ◽  
pp. 131
Author(s):  
Muh Yusuf Indris ◽  
Irwan Halid ◽  
Sukriming Sapareng

This study aims to determine the effectiveness of N2-fixing microbes contained in organic organic fertilizers at four levels of nitrogen fertilizer application in increasing the performance of oil palm seedlings. The experiment was carried out in the form of an experiment using a Randomized Block Design with 2 factors: organic organic fertilizer and nitrogen fertilizer. The first factor with three levels of treatment, namely without organic biological fertilizer, Organic fertilizer from cow dung (Agro Flower) 1 g / kg of Soil and Organic organic fertilizer (Biost) 1 g / kg of Soil. While the second factor consists of four levels, namely without N fertilizer, N fertilizer 50% of the standard dose, N fertilizer 100% of the standard dose, and N fertilizer of 150% of the standard dose. Each treatment was tested on 4 oil palm seedlings and repeated 3 times, so that 144 experimental plants were obtained. The observations made were the variable plant performance includes plant height, number of leaves, and stem diameter. Variants of plant nutrient levels included total N nutrient levels, P nutrient levels, and K nutrient levels. The results showed that N-inhibiting microbes contained in organic organic fertilizer increased plant height and stem diameter significantly in oil palm nurseries. The use of a 100% dose of N fertilizer together with organic biofertilizers shows the best crop performance results.


1997 ◽  
Vol 48 (5) ◽  
pp. 635 ◽  
Author(s):  
C. J. Birch ◽  
S. Fukai ◽  
I. J. Broad

The effect of nitrogen application on the grain yield and grain protein concentration of barley was studied in 13 field trials covering a wide range of soil N conditions over 4 years at locations in south-eastern Queensland. The main objectives of the study were to quantify the response of barley to N application rate over a range of environmental conditions, and to explain the response in terms of soil mineral N, total N uptake, and N distribution in the plants. Barley made efficient use of N (60 kg grain/kg N) until grain yield reached 90% of maximum yield. Grain protein concentration did not increase to levels unacceptable for malting purposes until grain yield exceeded 85–90% of maximum yield. Nitrogen harvest index was generally high (above 0·75), and did not decrease until the total N supply exceeded that necessary for maximum grain yield. Rates of application of N for malting barley should be determined on the basis of soil analysis (nitrate-N) to 1 m depth and 90% of expected maximum grain yield, assuming that 17 kg N is taken up per tonne of grain produced. It can further be assumed that the crop makes full use of the nitrate N to 1 m present at planting, provided the soil is moist to 1 m. A framework relating grain yield to total N uptake, N harvest index, and grain N concentration is presented. Further, total N uptake of fertilised barley is related to N uptake without fertiliser, fertiliser application rate, and apparent N recovery. The findings reported here will be useful in the development of barley simulation models and decision support packages that can be used to aid N management.


1990 ◽  
Vol 70 (1) ◽  
pp. 151-162 ◽  
Author(s):  
C. A. CAMPBELL ◽  
J. G. McLEOD ◽  
F. SELLES ◽  
F. B. DYCK ◽  
C. VERA ◽  
...  

Winter wheat (Triticum aestivum L.) production in Saskatchewan has increased in recent years due to the introduction of Norstar, a winter hardy variety, and due to the reduction in winter injury when the crop is seeded directly into standing stubble (stubbling-in). Large variations in the amount and distribution of seasonal precipitation in the Brown soil zone may prove detrimental to the adoption of this system. If implemented, fertilizer recommendations will need to be developed to fit this cropping system. A 4-yr study was conducted at Swift Current, Saskatchewan on an orthic Brown Chernozemic silt loam soil to determine the effect of rate, season of application, and placement of urea-N on grain yields and protein concentration of stubbled-in winter wheat. Plant density was unaffected by N. In 1984–1985 and 1986–1987 adequate weather conditions from seeding to early spring resulted in acceptable plant stands, but in 1985–1986 suboptimal winter temperatures and in 1987–1988 severe drought during fall and early spring reduced over-winter survival of wheat. Only 1 year provided better-than-average growing season weather conditions and thus good yields. Grain protein was < 11.5% (the critical lower level for milling) in two of the 4 years. In 1 year, a dry fall and winter coupled with a prolonged hot, dry early spring resulted in poor grain yields and very high protein concentrations (20–22%). Fertilizer-nitrogen, broadcast at 50 kg ha−1 at seeding, resulted in yields and grain protein concentrations similar to those when N was broadcast in April. Band placement of N was superior to broadcast application only in terms of grain protein concentration and N fertilizer recovery. There was no difference between banding N at 5 and 10 cm depth. In all years studied, application of N at 100 kg ha−1 was excessive for this system. It was concluded that producers should be cautious in attempting to grow stubbled-in winter wheat in the Brown soil zone.Key words: Yield, grain protein, N recovery, plant population, kernel weight


1991 ◽  
Vol 71 (4) ◽  
pp. 997-1009 ◽  
Author(s):  
C. A. Grant ◽  
L. E. Gauer ◽  
L. D. Bailey ◽  
D. T. Gehl

In a 3-yr field experiment, six barley cultivars — one conventional height malting type, two semidwarf, two conventional height, and one short feed type — were grown at three sites, with six nitrogen application rates ranging from 0 to 200 kg ha−1, to determine the effects of cultivar and N level on N utilization under varying moisture conditions. Nine site-years of data were divided into three levels, low, moderate, and high, based on estimated moisture supply. As moisture level increased, protein concentration of the barley cultivars decreased, while protein yield and total N uptake increased. Cultivars with higher grain yield tended to be lower in protein concentration, but higher in protein yield, total N uptake and N use efficiency than those with lower grain yields. Differences among the cultivars in protein concentration were greater at low than high moisture levels, while differences due to N application were greater at high than low moisture levels. Within the range of N applied, nitrogen use efficiency decreased at high N levels under low and moderate moisture conditions, but was relatively constant at high moisture levels. Protein concentration response to N applications differed slightly among cultivars at all moisture levels, but cultivar by N level interactions in protein yield response only occurred under high moisture conditions. Cultivars respond similarly to N applications in terms of straw N concentration, total N uptake and N use efficiency. Key words: N, nitrogen, barley (Hordeum vulgare), moisture, protein, N use efficiency


1992 ◽  
Vol 119 (3) ◽  
pp. 373-381 ◽  
Author(s):  
A. Lloyd

SUMMARYForty-one experiments were carried out in England and Wales between 1983 and 1985 to compare ammonium nitrate and urea as N top dressings for multicut silage.The results showed that relative dry matter yields from the two fertilizers differed considerably between sites. However, compared with ammonium nitrate, there was a mean yield decrease with urea of 2% at the first cut and 5% at the second cut. Mean herbage N contents and apparent N recoveries were lower with urea than with ammonium nitrate at both the first and second cuts. It appeared, at least for first-cut dressings applied in early spring, that urea effectiveness increased with the amount of rain falling within 3 days of fertilizer application. The effect was much less obvious at the second cut.Urea effectiveness was not markedly reduced on soils of high pH or light texture, where higher ammonia volatilization losses might have been expected.


1983 ◽  
Vol 63 (4) ◽  
pp. 719-725 ◽  
Author(s):  
A. A. BOMKE ◽  
R. A. BERTRAND

Urea and ammonium nitrate were applied at rates of 75, 150 and 300 kg N/ha as either a single application in April or split into three equal increments, one applied in April and the second and third following cuts one and two. The orchardgrass-perennial ryegrass sward responded significantly to applied N in each year; however, the yield produced by the two sources differed in only one of the three years. In that year split applied ammonium nitrate gave 8% higher yields than similarly applied urea. The sources were found to be equivalent when applied in the spring. Split application of the N rates increased total annual dry matter yields in one of the three years regardless of N source. In all three years split application of N shifted forage production from cut one to cuts two and three. Key words: N uptake, split N application, orchardgrass-perennial ryegrass sward


2003 ◽  
Vol 83 (5) ◽  
pp. 497-505 ◽  
Author(s):  
A. N’Dayegamiye ◽  
S. Huard ◽  
Y. Thibault

Mixed paper mill sludges are an important source of N for crop production. An estimate of direct and residual N recovery is necessary for their efficient management. A 3-yr field study (1997-1999) was conducted in central Quebec, Canada, to evaluate mixed paper mill sludges (PMS) effects on corn (Zea mays L.) yields and N nutrition, N recovery and N efficiency. The effects of PMS on soil NO3-N and total N levels were also determined. The study was situated on a silt loam Baudette soil (Humic Gleysol). The treatments included 3 PMS rates (30, 60 and 90 t ha-1 on wet basis) applied alone or in combination with N fertilizer (90 and 135 kg N ha-1, respectively, for 60 and 30 t ha-1). Treatments also included a control without PMS or N fertilizer, and a complete mineral N fertilizer (180 kg N ha-1) as recommended for corn. The previous plots were split beginning with the second year of the experiment, for annual and biennal PMS applications. Similar treatments as above were made on an adjacent site to evaluate N recovery under climatic conditions in 1999. In all years, PMS applied alone significantly increased corn yields by 1.5–5 t ha-1, compared to the unfertilized control. However, corn yields and N uptake were highest from the application of PMS in combination with N fertilizer. Biennial PMS applications at 60 to 90 ha-1 significantly increased corn yields and N uptake, which suggest high PMS residual effect; however, these increases were lower than those obtained with annual PMS applications. The N efficiency varied in 1997 from 13.0 to 15.4 kg grain kg N-1 for mineral N fertilizer and ranged from 3 to 13.7 kg grain kg N-1 for PMS, decreasing proportionally to increasing PMS rates. Apparent N recovery ranged from 1 3 to 19% in 1997 and from 10 to 14% in the residual year (1998), compared to 30 and 49%, respectively, for mineral N fertilizer. Depending on the PMS rate, N recovery varied from 13 to 21% in 1999. The results indicate high N supplying capacity and high r esidual N effects of PMS, which probably influenced corn yields and N nutrition. Annual PMS applications alone or combined with mineral N fertilizer had no significant effect on soil NO3-N and total N levels. This study demonstrates that application of low PMS rate (30 t ha-1) combined with mineral N fertilizer could achieve high agronomic, economic and environmental benefits on farms. Key words: Mixed paper mill sludges, corn yields, N uptake, N efficiency, residual effects, soil N


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 553C-553
Author(s):  
Paula B. Aguirre ◽  
Teryl R. Roper ◽  
Armand R. Krueger

The uptake efficiency of apple scions and rootstocks has not been studied in the field. Using 15N (ammonium nitrate, 1 atom % 15N) we compared nitrogen uptake efficiency of 12 rootstocks grafted to one scion (Gala) and of 20 scions on the same clonal rootstock (M.9 EMLA) in orchards located in northeastern Wisconsin. Trees were treated in either Fall or Spring 1998 with 40 g actual N per tree applied as a liquid to the soil. N uptake was assessed by measuring 15N in leaf and wood tissue taken monthly from June to Oct. 1998. Tissues were oven-dried and analized using a ratio mass spectrometer. Treatment differences were greater among scions with the same rootstocks than among rootstocks with the same scion. Total N and 15N content differences were found between roostocks and these values were inversely related to tree size.


Sign in / Sign up

Export Citation Format

Share Document