Rare Germline GLMN Variants Identified from Blue Rubber Bleb Nevus Syndrome Might Impact mTOR Signaling

2020 ◽  
Vol 22 (10) ◽  
pp. 675-682 ◽  
Author(s):  
Jie Yin ◽  
Zhongping Qin ◽  
Kai Wu ◽  
Yufei Zhu ◽  
Landian Hu ◽  
...  

Backgrounds and Objective: Blue rubber bleb nevus syndrome (BRBN) or Bean syndrome is a rare Venous Malformation (VM)-associated disorder, which mostly affects the skin and gastrointestinal tract in early childhood. Somatic mutations in TEK have been identified from BRBN patients; however, the etiology of TEK mutation-negative patients of BRBN need further investigation. Method: Two unrelated sporadic BRBNs and one sporadic VM were firstly screened for any rare nonsilent mutation in TEK by Sanger sequencing and subsequently applied to whole-exome sequencing to identify underlying disease causative variants. Overexpression assay and immunoblotting were used to evaluate the functional effect of the candidate disease causative variants. Results: In the VM case, we identified the known causative somatic mutation in the TEK gene c.2740C>T (p.Leu914Phe). In the BRBN patients, we identified two rare germline variants in GLMN gene c.761C>G (p.Pro254Arg) and c.1630G>T(p.Glu544*). The GLMN-P254R-expressing and GLMN-E544X-expressing HUVECs exhibited increased phosphorylation of mTOR-Ser-2448 in comparison with GLMN-WTexpressing HUVECs in vitro. Conclusion: Our results demonstrated that rare germline variants in GLMN might contribute to the pathogenesis of BRBN. Moreover, abnormal mTOR signaling might be the pathogenesis mechanism underlying the dysfunction of GLMN protein.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A958-A958
Author(s):  
Maria Lozano-Rabella ◽  
Andrea Garcia-Garijo ◽  
Jara Palomero ◽  
Florian Erhard ◽  
Juan Martín-Liberal ◽  
...  

BackgroundDespite recent advances in exome and RNA sequencing to identify tumor-rejection antigens including neoantigens, the existing techniques fail to identify the vast majority of antigens targeted by tumor-reactive cells. A growing number of studies suggest that HLA-I peptides derived from non-canonical (nonC) open reading frames or derived from allegedly non-coding regions can contribute to tumor immunogenicity. Here we use proteogenomics to identify personalized candidate canonical and non-canonical tumor-rejection antigens and to evaluate their contribution to cancer immune surveillance in patients.MethodsWhole exome sequencing was performed to identify the non-synonymous somatic mutations (NSM) and immunopeptidomics to identify the HLA-I presented peptides (pHLA) in 9 patient-derived tumor cell lines (TCL). Peptid-PRISM proteogenomics pipeline was used to identify both canonical and non-canonical pHLA, including those derived from NSM in coding regions. All peptides containing mutations and derived from either cancer-testis (CTA) or tumor-associated antigens (TAA) were selected as candidate tumor antigens. For nonC peptides, an immunopeptidomics healthy dataset containing several tissues and HLA-allotypes was used to eliminate those derived from normal ORFs and select nonC peptides preferentially expressed in tumor cells (nonC-TE). The selected candidate peptides were synthesized, pulsed onto autologous APCs and co-cultured with tumor-reactive ex vivo expanded lymphocytes to assess immune recognition (figure 1).ResultsNonC-TE peptides were identified in all TCL studied, ranging from 0.5% to 5.4% of the total HLA-I presented peptides (n= 506). As described previoulsy, 5’UTR were the main source. Of note, the tumor type did not have an impact on the frequency of presented nonC peptides, but rather the presence of HLA-A*11:01 and HLA-A*03:01 was a major determinant. T cell responses were detected against at least 13/33 putative neoantigens, 2/24 CTA and 2/61 TAA. On the contrary, none of the 471 nonC-TE candidate peptides tested thus far, including one containing a NSM were able to elicit a recall immune response. Nevertheless, T cells recognizing at least 3 of them were detected through in vitro sensitization of non-autologous PBMCs.Abstract 912 Figure 1Workflow diagramTumor biopsies and blood samples are obtained from cancer patients (left panel). Patient-derived tumor cell lines are generated in vitro, the peptides presented on HLA molecules are further isolated and analyzed in a mass-spectrometer (top panel). Whole exome sequencing (WES) from matched tumor and healthy tissue is performed to identify the non-synonymous somatic mutations (NSM) (middle panel). Peptide-PRISM proteogenomics pipeline combines the information from the immunopeptidomics data and WES to identify pHLA sequences from both canonical and non-canonical candidate tumor antigens (top right panel). Lymphocyte populations either TILs or sorted PBMCs are expanded and further screened for pre-existing T cell responses (bottom panel) against the candidate epitopes by co-culturing the T cells with peptide-pulsed autologous APC. The recognition is assessed by measuring IFNg release by elispot and the upregulation of activation surface markers by FACS (bottom right panel).ConclusionsOur results show that although HLA-I nonC peptides were frequently presented in all TCLs studied and they can be immunogenic, neoantigens derived from mutations in canonical coding regions were preferentially recognized by tumor-reactive lymphocytes, suggesting T cells targeting the latter are primed more efficiently. The identification of mutated nonC antigens using whole genome sequencing to identify mutations in non-coding regions warrants further examination. Still, the specificity of many tumor-reactive TILs remains unknown.Ethics Approval”This study was approved by the ”Comité de Ética de Investigación con Medicamentos del Hospital Universitario Vall d’Hebron” institution’s Ethics Board; approval number PR(AG)537/2019.”


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1377-1377
Author(s):  
Martin Neumann ◽  
Sandra Heesch ◽  
Cornelia Schlee ◽  
Stefan Schwartz ◽  
Nicola Goekbuget ◽  
...  

Abstract Abstract 1377 Introduction: Early T-cell precursor (ETP) ALL accounting for 10% of all T-ALL cases is of special interest because of its proposed origin from early thymic progenitors with multilineage differentiation potential. ETP-ALL is associated with a poorer outcome in pediatric and adult patients. On the molecular level, ETP-ALL is characterized by a specific immunophenotype (CD1-, CD5weak, CD8-, co-expression of stem cell and/or myeloid antigens) and distinct molecular features (expression of stem cell genes, high frequency of FLT3 mutations with absence of NOTCH1 mutations). Whereas a highly heterogeneous genetic pattern was revealed by whole genome sequencing in pediatric patients, the genetic background of adult ETP-ALL remains largely unknown. Here we investigated genetic alterations in adult ETP-ALL by whole exome sequencing and subsequently analyzed specific target genes. Patients and methods: We performed whole exome sequencing of five paired (diagnosis/remission) adult ETP-ALL patients enrolled in German Acute Lymphoblastic Leukemia Multicenter Study Group (GMALL) trials. Using exon capturing from genomic DNA, followed by 76-bp paired-end sequencing on an Illumina Genome Analyzer IIx platform, we generated at least 5 Gb of exome sequence from each ETP-ALL and remission samples. Somatic mutations were identified by comparing the ETP-ALL with the remission exome sequence, excluding all annotated polymorphisms (dbSNP130), non-coding positions and positions with evidence of a variant in the corresponding remission samples. Candidate variants were confirmed by capillary sequencing of genomic DNA. The DNMT3A mutations status was analyzed by Sanger sequencing of exons 11–23 in additional 68 adult ETP-ALL (55 male, 13 female, median age: 38 years) as well as the mutation status of the polycomb repressor complex (PRC) genes EZH2 and SUZ12. For 52 of 68 patients clinical follow-up data were available. Results: Using whole exome sequencing we found a total of 56 non-synonymous somatic mutations or indels in the five ETP-ALL patients (range: 6 to 16 per patient). Eleven mutations/indels affected cancer genes. DNMT3A (2/5) and FAT3 (2/5) were recurrently mutated in the five patients. The DNA-methyl-transferase DNMT3A is a frequent mutational target in acute myeloid leukemia (AML; 20%), whereas FAT3 (FAT, tumor suppressor homolog 3) mutations were recently reported in ovarian carcinoma (TCGA, Nature 2011). Novel mutations identified in adult ETP-ALL involved genes in epigenetic regulation (e.g. MLL2, MLL3, BMI1), and in genes previously reported to be mutated in ETP-ALL (e.g. in JAK1, ETV6, NOTCH1, DNM2). By Sanger sequencing, we screened for DNMT3A mutations in a larger cohort of adult ETP-ALL. DNMT3A mutations were present in 11 of the 68 (16%) patients, a mutation rate similar to AML. Amino acid R882 (exon 23), the most frequently mutated amino acid in AML, was mutated in five ETP-ALL. The remaining six mutations occurred in single spots, with one exception in the ZNF or the MTF domain. Patients with a DNMT3A mutation were significantly older (median: 63 vs 37 years, P=0.016). No correlation was found between DNMT3A and FLT3 mutations (27% in DNMT3A mut pts. vs. 37% in DNMT3A wt pts., P=0.41) or NOTCH1 mutations (10% in DNMT3A mut pts. vs. 16% in DNMT3A wt pts., P=0.47). In addition, we investigated genetic alterations in epigenetic regulators including members of the polycomb repressor complex (PRC). Mutations were seen in EZH2 in 4/68 (6%), SUZ12 in 1/68 (1%) and SH2B3 in 4/69 (6%) of ETP-ALL. Interestingly, patients with at least one mutation in an epigenetic regulator gene (DNMT3A, SUZ12, SH2B3, MLL2, or EZH2) showed a trend towards an inferior survival (one-year-survival: 50% vs. 85%, P=0.08). Conclusion: Adult ETP-ALL patients display a heterogenous spectrum of mutations, particularly affecting genes involved in epigenetic regulation. The spectrum is different to pediatric patients with a lower rate of polycomb repressor complex and a higher rate of DNMT3A mutations. The higher rate of DNMT3A mutations in older patients might point to a different pathogenesis compared to pediatric ETP-ALL. Like in AML, DNMT3A mutations in adult ETP-ALL show a similar frequency, within the same hot spots and are correlated with an adverse prognostic value, underscoring the myeloid character of ETP-ALL. Thus, these data may provide a rationale to use epigenetic therapy in ETP-ALL. Disclosures: Krebs: Illumina: Honoraria. Greif:Illumina: Honoraria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Suqing Chen ◽  
Peilin Wu ◽  
Bin Wu ◽  
Chenye Lin ◽  
Junhong Chen ◽  
...  

TYK2 variants can impact disease onset or progression. In our previous study, we identified abnormal splicing that happened near rs781536408 in the TYK2 gene. The purpose of this research was to examine the effect of the mutation on alternative splicing in vivo and in vitro. Whole exome sequencing was performed to identify the mutations followed by bidirectional Sanger sequencing. Then the minigene analysis was carried out based on HeLa and HEK293T cell lines. The results showed that rs781536408 (c.2395G>A, p.G799R) was homozygous in the patient, but heterozygous in parents. PCR amplification confirmed the abnormal splicing in the somatic cells of the patients, but not in the parents. Sanger sequencing results showed that there was a skipping of exon18 near the mutation. For minigene analysis, there was no difference between the wild-type and the mutant type in the two minigene construction strategies, indicating that mutation c.2395G>A had no effect on splicing in vitro. Combining the results of in vivo, we speculated that the effect of the mutation on splicing was not absolute, but rather in degree.


2020 ◽  
Author(s):  
Xinyu Wang ◽  
Qijue Lu ◽  
Yue Zhao ◽  
Xiang Fei ◽  
Jianglong Chen ◽  
...  

Abstract Background: Hexokinase domain component 1 (HKDC1) belongs to the fifth hexokinase, which plays an oncogenic role in lymphoma, liver cancer, and breast cancer, as reported. However, its biological functions in lung adenocarcinoma (LUAD) has not been studied. Methods: We applied bioinformatics analysis, quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and a series of functional assays in vitro and in vivo to investigate the roles of HKDC1 in LUAD. Results: We discovered that HKDC1 was highly expressed in LUAD tissues and cell lines, and the positive expression of HKDC1 was correlated with aberrant clinicopathological characteristics in LUAD patients. Besides, HKDCI could be served as a prognostic predictor for LUAD patients. Overexpression of HKDC1 promoted the proliferation, migration, invasion, glycolysis, EMT and tumorgenicity, whereas knockdown of HKDC1 produced the opposite functional effect. Mechanistically, HKDC1 could regulate the AMPK/mTOR signaling pathway to perform its biological function. Conclusions: Our findings suggested that HKDC1 plays an oncogenic role in LUAD. Targeting this gene may provide a promising therapeutic target to delay LUAD progress.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5587-5587 ◽  
Author(s):  
Rikhia Chakraborty

Abstract Langerhans Cell Histiocytosis (LCH) is a myeloproliferative disorder characterized by lesions composed of pathologic CD207+ dendritic cells (DCs) with an inflammatory infiltrate. BRAFV600E remains the only recurrent mutation reported in LCH. In order to evaluate the spectrum of somatic mutations in LCH, whole exome sequencing (WES) was performed on matched LCH and normal tissue samples obtained from 41 patients. Lesions from other histiocytic disorders, juvenile xanthogranuloma (JXG), Erdheim-Chester disease (ECD), and Rosai-Dorfman disease (RDD) were also evaluated. All of the lesions from histiocytic disorders were characterized by an extremely low overall rate of somatic mutations. Notably, 33% (7/21) of LCH cases with wild-type BRAF and none (0/20) with BRAFV600E harbored somatic mutations in MAP2K1 (six in-frame deletions and one missense mutation) that induced ERK phosphorylation in vitro. Single cases of somatic mutations of the MAPK pathway genes ARAF and ERBB3 were also detected. The ability of MAPK pathway inhibitors to suppress MEK and ERK phosphorylation in cell culture and primary tumor models was dependent on the specific LCH mutation. The findings of this study support a model in which ERK activation is a universal endpoint in LCH arising from pathologic activation of upstream signaling proteins. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Julian Musa ◽  
Florencia Cidre-Aranaz ◽  
Marie-Ming Aynaud ◽  
Martin F. Orth ◽  
Maximilian M. L. Knott ◽  
...  

Abstract Pediatric malignancies including Ewing sarcoma (EwS) feature a paucity of somatic alterations except for pathognomonic driver-mutations that cannot explain overt variations in clinical outcome. Here, we demonstrate in EwS how cooperation of dominant oncogenes and regulatory germline variants determine tumor growth, patient survival and drug response. Binding of the oncogenic EWSR1-FLI1 fusion transcription factor to a polymorphic enhancer-like DNA element controls expression of the transcription factor MYBL2 mediating these phenotypes. Whole-genome and RNA sequencing reveals that variability at this locus is inherited via the germline and is associated with variable inter-tumoral MYBL2 expression. High MYBL2 levels sensitize EwS cells for inhibition of its upstream activating kinase CDK2 in vitro and in vivo, suggesting MYBL2 as a putative biomarker for anti-CDK2-therapy. Collectively, we establish cooperation of somatic mutations and regulatory germline variants as a major determinant of tumor progression and highlight the importance of integrating the regulatory genome in precision medicine.


2020 ◽  
Vol 245 (11) ◽  
pp. 956-963
Author(s):  
Xiao-Ming Huang ◽  
Wan-Chen Yang ◽  
Yang Liu ◽  
Dong-Run Tang ◽  
Tong Wu ◽  
...  

Orbital venous malformation results from the aberrant angiogenesis in the orbit; however, the detailed molecular mechanism is still not clear. In this study, tissue samples from 27 patients with orbital venous malformation were collected and subjected to whole exome sequencing. Melanocortin 4 receptor was the gene with highest incidence (7/27) of mutation identified in this series. A total of four types of mutations were found in the coding region and the 5ʹ-untranslated region of melanocortin 4 receptor. All these mutations resulted in the upregulation of melanocortin 4 receptor expression. In vitro assays using human umbilical vein endothelial cells demonstrated that the endothelial properties including cell proliferation, cell cycle, cell migration, and tube formation are positively correlated with the expression level of melanocortin 4 receptor. Melanocortin 4 receptor mutations resulted in increased cAMP production in a cell-based assay. By RNA sequencing technique, melanocortin 4 receptor was found to modulate the downstream genes of PI3K/AKT/mTOR pathway, including p21, cyclin B1, ITGA10, and ITGA11, which are known to regulate the endothelial properties. These data demonstrated that mutations in melanocortin 4 receptor modulate the downstream signaling pathway, facilitate the angiogenic activity of endothelial cells, and therefore is one potential mechanism of orbital venous malformation pathogenesis. Impact statement The detailed molecular mechanism of orbital venous malformation (OVM) is still not clear. Using whole exome sequencing, 4 types of melanocortin 4 receptor (MC4R) mutation were detected in 7 of 27 patients with OVM, and all types of MC4R mutations resulted in the upregulation of MC4R expression. In vitro study indicated that MC4R has impacts on the proliferation, cell cycle, migration, and tube formation of the endothelial cells. Moreover, MC4R mutations altered the downstream signaling, including cAMP concentration and the expression levels of several PI3K/AKT/mTOR downstream genes, including p21, cyclin B1, ITGA10, and ITGA11. MC4R mutations may lead to the pathogenesis of OVM through modulating the downstream signaling to alter the angiogenic activity of endothelial cells.


2020 ◽  
Vol 27 ◽  
Author(s):  
Naser-Aldin Lashgari ◽  
Nazanin Momeni Roudsari ◽  
Saeideh Momtaz ◽  
Negar Ghanaatian ◽  
Parichehr Kohansal ◽  
...  

: Inflammatory bowel disease (IBD) is a general term for a group of chronic and progressive disorders. Several cellular and biomolecular pathways are implicated in the pathogenesis of IBD, yet the etiology is unclear. Activation of the mammalian target of rapamycin (mTOR) pathway in the intestinal epithelial cells was also shown to induce inflammation. This review focuses on the inhibition of the mTOR signaling pathway and its potential application in treating IBD. We also provide an overview on plant-derived compounds that are beneficial for the IBD management through modulation of the mTOR pathway. Data were extracted from clinical, in vitro and in vivo studies published in English between 1995 and May 2019, which were collected from PubMed, Google Scholar, Scopus and Cochrane library databases. Results of various studies implied that inhibition of the mTOR signaling pathway downregulates the inflammatory processes and cytokines involved in IBD. In this context, a number of natural products might reverse the pathological features of the disease. Furthermore, mTOR provides a novel drug target for IBD. Comprehensive clinical studies are required to confirm the efficacy of mTOR inhibitors in treating IBD.


2021 ◽  
Vol 13 ◽  
pp. 251584142199719
Author(s):  
Simranjeet Singh Grewal ◽  
Joseph J. Smith ◽  
Amanda-Jayne F. Carr

Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 ( BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ege Ülgen ◽  
Özge Can ◽  
Kaya Bilguvar ◽  
Cemaliye Akyerli Boylu ◽  
Şirin Kılıçturgay Yüksel ◽  
...  

Abstract Background In the clinical setting, workflows for analyzing individual genomics data should be both comprehensive and convenient for clinical interpretation. In an effort for comprehensiveness and practicality, we attempted to create a clinical individual whole exome sequencing (WES) analysis workflow, allowing identification of genomic alterations and presentation of neurooncologically-relevant findings. Methods The analysis workflow detects germline and somatic variants and presents: (1) germline variants, (2) somatic short variants, (3) tumor mutational burden (TMB), (4) microsatellite instability (MSI), (5) somatic copy number alterations (SCNA), (6) SCNA burden, (7) loss of heterozygosity, (8) genes with double-hit, (9) mutational signatures, and (10) pathway enrichment analyses. Using the workflow, 58 WES analyses from matched blood and tumor samples of 52 patients were analyzed: 47 primary and 11 recurrent diffuse gliomas. Results The median mean read depths were 199.88 for tumor and 110.955 for normal samples. For germline variants, a median of 22 (14–33) variants per patient was reported. There was a median of 6 (0–590) reported somatic short variants per tumor. A median of 19 (0–94) broad SCNAs and a median of 6 (0–12) gene-level SCNAs were reported per tumor. The gene with the most frequent somatic short variants was TP53 (41.38%). The most frequent chromosome-/arm-level SCNA events were chr7 amplification, chr22q loss, and chr10 loss. TMB in primary gliomas were significantly lower than in recurrent tumors (p = 0.002). MSI incidence was low (6.9%). Conclusions We demonstrate that WES can be practically and efficiently utilized for clinical analysis of individual brain tumors. The results display that NOTATES produces clinically relevant results in a concise but exhaustive manner.


Sign in / Sign up

Export Citation Format

Share Document