scholarly journals Mechanistic insights into the regulation of plant phosphate homeostasis by the rice SPX2 – PHR2 complex

Author(s):  
Zeyuan Guan ◽  
Qunxia Zhang ◽  
Zhifei Zhang ◽  
Julie Savarin ◽  
Jiaqi Zuo ◽  
...  

Abstract Phosphate (Pi) is a key macronutrient limiting plant growth and crop productivity. In response to the nutrient deficiency, Pi starvation response (PHR) transcription factors activate Pi starvation induced (PSI) genes. PHR transcription factors are negatively regulated by stand-alone SPX proteins, cellular receptors for inositol pyrophosphate (PP-InsP) nutrient messengers. How PP-InsP-bound SPX domains interact with PHR transcription factors is poorly understood. Here, we report crystal structures of the rice SPX2/InsP6/PHR2 complex and of the PHR2 DNA binding (MYB) domain in complex with its target DNA at resolutions of 3.1 Å and 2.7 Å, respectively. Inositol polyphosphate binding causes SPX2 to assemble into a domain-swapped dimer. The signalling-active SPX2 dimer binds two copies of PHR2, targeting both its coiled-coil (CC) oligomerisation domain and its MYB domain. Structural comparisons, biochemical analyses and genetic characterizations reveal that the SPX2 senses InsP6 / PP-InsPs to inactivate PHR2 by establishing severe steric clashes with the PHR2 MYB domain, preventing DNA binding, and by disrupting oligomerisation of the PHR2 CC domain, attenuating promoter binding. The complex structure rationalizes how PP-InsPs activate SPX receptor proteins to target PHR family transcription factors and provides a mechanistic framework to engineer crops with improved phosphate use efficiency.

Author(s):  
Martina K. Ried ◽  
Rebekka Wild ◽  
Jinsheng Zhu ◽  
Larissa Broger ◽  
Robert K. Harmel ◽  
...  

AbstractPhosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signalling cascades, enabling them to maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signalling molecules (PP-InsPs), which are sensed by SPX-domain containing proteins. In plants, PP-InsP bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8 – SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors. (173 words)


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Martina K. Ried ◽  
Rebekka Wild ◽  
Jinsheng Zhu ◽  
Joka Pipercevic ◽  
Kristina Sturm ◽  
...  

AbstractPhosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signaling cascades, enabling them to stably maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signaling molecules (PP-InsPs), which are sensed by SPX domain-containing proteins. In plants, PP-InsP-bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8–SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 253-253 ◽  
Author(s):  
Louise Natalie Winteringham ◽  
Raelene Endersby ◽  
Jennifer Beaumont ◽  
Jean-Philippe Lalonde ◽  
Merlin Crossley ◽  
...  

Abstract Abstract 253 Hemopoietic lineage commitment is controlled, in part, by transcription factors that regulate specific genes required for the formation of mature blood cells. Differentiation along particular hemopoietic lineages is dependant not only on the presence of particular transcription factors, but also on appropriate concentrations - altering transcription factor levels can force cells into different hemopoietic pathways. Transcription factors undergo numerous post-translational modifications and are controlled spatially via sub-cellular localisation. De-regulation of transcription factors can result in leukemias, or other blood disorders. GATA-1 is an example of a key lineage-determining gene, essential for erythropoiesis. Increasing GATA-1 levels promotes maturation along the erythroid pathway, whereas reducing GATA-1 concentrations favours myelopoiesis. GATA-1 regulation occurs at multiple levels including transcription, translation and post-translational modifications such as phosphorylation, acetylation, ubiquitination and sumoylation. Although GATA-1 ubiquitination modifies the protein for proteasomal degradation, the effect of adding small ubiquitin-like modier (Sumo) to GATA-1 is unclear. Several examples of hemopoietic differentiation plasticity have been observed. We reported a lineage switch by erythroleukemic J2E cells which spontaneously developed a monoblastoid phenotype. Two genes (Hls5 and Hls7/Mlf1) were isolated from this lineage switch with potential lineage-determining features. Hls5 is a member of the RBCC (Ring finger, B-box, Coiled-coil) family of proteins, which includes PML. Ectopic expression of Hls5 impedes erythroid differentiation by reducing GATA-1 levels, and suppressing hemoglobin synthesis. Significantly, Hls5 relocates from the cytoplasm to associate with GATA-1 in the nucleus, where it interferes with DNA binding and transactivation of GATA-1. Several members of the RBCC family are ubiquitin E3 ligases, catalysing the final step in the ubiquitination process - these molecules play a vital role in regulating the levels of target proteins. Here we show that Hls5 is a bona fide ubiquitin E3 ligase, in partnership with several ubiquitin E2 enzymes. The Ring finger is critical for Hls5 ligase activity as mutation of key residues within the Ring finger ablates catalytic activity. Interestingly, a yeast 2 hybrid screen for Hls5 interactors identified Ubc9 and Pias1, which act as E2 and E3 enzymes in the sumoylation cascade. Co-immunoprecipitation, BRET and co-localization experiments confirmed the Hls5 association with Ubc9 and Pias1. Moreover, Hls5 binds Sumo-1 (but not Sumo-2 or 3), and co-localizes with Sumo-1 in discrete nuclear bodies. Thus, Hls5 interacts with several components of the intracellular sumoylation machinery. Hls5 can also reduce sumoylated proteins globally, indicating it may target these modified proteins for degradation. Recently, a new family of ubiquitin E3 ligases has been described which specifically mark sumoylated proteins for degradation. These Sumo-targeted ubiquitin ligases (STUbL) are found primarily in yeast, and only one mammalian STUbL has been identified. We postulated that Hls5 may be a STUbL, capable of regulating sumoylated GATA-1. Our data demonstrate that while Hls5 is able to bind GATA-1 via the B-box and Coiled-coil domains, it preferentially associates with sumoylated GATA-1 through a canonical Sumo interacting motif (SIM). This results in increased GATA-1 ubiquitination and, as a consequence, levels of sumoylated GATA-1 are reduced substantially. Since mutation of the lysine necessary for Sumo attachment does not affect GATA-1 transactivation, sumoylation may act as a prelude to ubiquitination and protein turn-over. We propose, therefore, that GATA-1 mediates transcription of target genes, and is subsequently sumoylated by Pias1 and Ubc9 – addition of Sumo moieties to GATA-1 enhance binding to Hls5, which in turn impedes GATA-1 DNA binding, and promotes ubiquitination for proteasomal degradation. This model is consistent with decreased levels of GATA-1 in erythroid cells ectopically expressing Hls5, and with the original isolation of Hls5 as a potential lineage-determining gene involved with the erythroid to monoblastoid lineage switch. Thus, Hls5 is a novel STUbL which plays a role in hemopoietic lineage commitment by modulating GATA-1 activity and content. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1404-C1404
Author(s):  
Vivian Pogenberg ◽  
Larissa Consani-Textor ◽  
Matthias Wilmanns

The ability of basic zipper transcription factors to form homo- or heterodimers provides a paradigm for combinatorial control of eukaryotic gene expression. In a first study, we clarified the specificity of the MIcrophthalmia-associated Transcription Factor [1]. To achieve this, we solved three crystal structures: two structures of MITF in complex with DNA duplexes encompassing two different target motifs (E-box and M-box) and one APO-structure. We then analyzed interactions between these DNA elements and several MITF mutants with documented mice phenotypes, using complementary techniques. The comparison of these experiments together with available biological data reveals the particular mechanism of DNA recognition by MITF. Moreover we demonstrated how a shift in the leucine zipper register limits the choice of the homotypic dimerization partner among the other b-HLH-Zip transcription factors. In a second study, we wondered how facultative dimerization results in alternative DNA-binding repertoires on distinct regulatory elements [2]. In this respect, the hematopoietic b-Zip transcription factor MafB, is a good model, since it has the ability to form homo- and heterodimers with a few other transcription factors. We first determined two high-resolution structures of MafB as a homodimer and as a heterodimer with c-Fos bound to variants of the Maf-recognition element (MARE). The two structures revealed several unexpected and specific coiled coil interactions. Based on these findings, we have engineered two MafB mutants with opposite dimerization preferences. One of them indeed showed a strong preference for MafB/c-Fos heterodimerization. In addition this variant enabled a selection of heterodimer- favoring over homodimer-specific MARE variants, demonstrating that protein/protein and protein/DNA interactions are interconnected. Our data provide a new concept for transcription factor design to selectively activate dimer-specific pathways and binding repertoires.


2012 ◽  
Vol 34 (8) ◽  
pp. 950-968
Author(s):  
Guang-Ming GU ◽  
Jin-Ke WANG

1994 ◽  
Vol 14 (11) ◽  
pp. 7557-7568 ◽  
Author(s):  
J Zuo ◽  
R Baler ◽  
G Dahl ◽  
R Voellmy

Heat stress regulation of human heat shock genes is mediated by human heat shock transcription factor hHSF1, which contains three 4-3 hydrophobic repeats (LZ1 to LZ3). In unstressed human cells (37 degrees C), hHSF1 appears to be in an inactive, monomeric state that may be maintained through intramolecular interactions stabilized by transient interaction with hsp70. Heat stress (39 to 42 degrees C) disrupts these interactions, and hHSF1 homotrimerizes and acquires heat shock element DNA-binding ability. hHSF1 expressed in Xenopus oocytes also assumes a monomeric, non-DNA-binding state and is converted to a trimeric, DNA-binding form upon exposure of the oocytes to heat shock (35 to 37 degrees C in this organism). Because endogenous HSF DNA-binding activity is low and anti-hHSF1 antibody does not recognize Xenopus HSF, we employed this system for mapping regions in hHSF1 that are required for the maintenance of the monomeric state. The results of mutagenesis analyses strongly suggest that the inactive hHSF1 monomer is stabilized by hydrophobic interactions involving all three leucine zippers which may form a triple-stranded coiled coil. Trimerization may enable the DNA-binding function of hHSF1 by facilitating cooperative binding of monomeric DNA-binding domains to the heat shock element motif. This view is supported by observations that several different LexA DNA-binding domain-hHSF1 chimeras bind to a LexA-binding site in a heat-regulated fashion, that single amino acid replacements disrupting the integrity of hydrophobic repeats render these chimeras constitutively trimeric and DNA binding, and that LexA itself binds stably to DNA only as a dimer but not as a monomer in our assays.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
M. Adamczyk ◽  
E. Lewicka ◽  
R. Szatkowska ◽  
H. Nieznanska ◽  
J. Ludwiczak ◽  
...  

Abstract Background DNA binding KfrA-type proteins of broad-host-range bacterial plasmids belonging to IncP-1 and IncU incompatibility groups are characterized by globular N-terminal head domains and long alpha-helical coiled-coil tails. They have been shown to act as transcriptional auto-regulators. Results This study was focused on two members of the growing family of KfrA-type proteins encoded by the broad-host-range plasmids, R751 of IncP-1β and RA3 of IncU groups. Comparative in vitro and in silico studies on KfrAR751 and KfrARA3 confirmed their similar biophysical properties despite low conservation of the amino acid sequences. They form a wide range of oligomeric forms in vitro and, in the presence of their cognate DNA binding sites, they polymerize into the higher order filaments visualized as “threads” by negative staining electron microscopy. The studies revealed also temperature-dependent changes in the coiled-coil segment of KfrA proteins that is involved in the stabilization of dimers required for DNA interactions. Conclusion KfrAR751 and KfrARA3 are structural homologues. We postulate that KfrA type proteins have moonlighting activity. They not only act as transcriptional auto-regulators but form cytoskeletal structures, which might facilitate plasmid DNA delivery and positioning in the cells before cell division, involving thermal energy.


2014 ◽  
Vol 289 (31) ◽  
pp. 21605-21616 ◽  
Author(s):  
Shuo Wang ◽  
Miles H. Linde ◽  
Manoj Munde ◽  
Victor D. Carvalho ◽  
W. David Wilson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document