scholarly journals Visualizing Sphingosine-1-Phosphate Receptor 1(S1P1) Signaling During Central Nervous System De- and Re-Myelination

Author(s):  
Ezzat Hashemi ◽  
Hsing-Chuan Tsai ◽  
Ezra Yoseph ◽  
Monica Moreno ◽  
Li-Hao Yeh ◽  
...  

Abstract Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) mediated by aberrant immune responses. The current immune modulatory therapies are unable to protect and repair the brain damage caused by the immune attack. One of the therapeutic targets for MS is the sphingosine-1-phosphate (S1P) pathways, which signals via sphingosine-1-phosphate receptors 1-5 (S1P1-5), in the CNS and immune cells. In light of the potential neuro-protective properties of S1P signaling, we utilized the S1P1-GFP (Green fluorescent protein) reporter mice in the cuprizone-induced-demyelination model, to investigate the in vivo S1P- S1P1 signaling in the CNS. We observed S1P1 signaling in a subset of neural stem cells in the subventricular zone (SVZ) during demyelination. Additionally, oligodendrocyte progenitor cells in the SVZ and mature oligodendrocytes in the medial corpus callosum (MCC) expressed S1P1 signaling during remyelination. We did not observe S1P1 signaling in neurons and astrocytes in the cuprizone model. This approach was unable to determine S1P1-GFP signaling in the myeloid cells because of their aberrant GFP expression in GFP reporter mice. Significant S1P1 signaling was observed in lymphocytes during demyelination and inflammation. Our findings reveal β-arrestin dependent S1P1 signaling in oligodendrocyte lineage cells, indicating a role of S1P1 signaling during remyelination.

2001 ◽  
Vol 7 (12) ◽  
pp. 1356-1361 ◽  
Author(s):  
Josef Priller ◽  
Alexander Flügel ◽  
Tim Wehner ◽  
Matthias Boentert ◽  
Carola A. Haas ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 1228-1229
Author(s):  
Christopher S. Wallace ◽  
Michael A. Silverman ◽  
Michelle A. Burack ◽  
Janis E. Lochner ◽  
Richard G. Allen ◽  
...  

Recent technical advances in the ability to attach an endogenously fluorescent protein sequence—i.e., green fluorescent protein or GFP and its derivatives--to any protein of experimental interest promises to mark a new era of progress in the study of protein targeting. Bringing these new tools to bear on neurons of the central nervous system has been challenging, however, because they have a very complex structure and are relatively difficult to transfect because they are post-mitotic.We use two cell culture approaches to characterize protein trafficking within neurons of the central nervous system in vitro. The first is a dissociated culture of hippocampal neurons from embryonic (El8) rats which is especially suited to analysis by conventional light microscopy because these neurons are grown on glass coverslips at low density. Neurons cultured in this way develop a morphology comparable to that seen in vivo and permit the establishment of axons and dendrites to be analyzed by time-lapse microscopy.


2012 ◽  
Vol 18 (3) ◽  
pp. 258-263 ◽  
Author(s):  
M Kipp ◽  
S Amor

FTY720 (fingolimod; Gilenya®), a sphingosine 1-phosphate (S1P) receptor modulator, is the first oral disease-modifying therapy to be approved for the treatment of relapsing–remitting multiple sclerosis. FTY720 is rapidly converted in vivo to the active S-fingolimod-phosphate, which binds to S1P receptors. This action inhibits egress of lymphocytes from the lymph nodes, preventing entry into the blood and thus infiltration into the central nervous system. More recent studies, however, convincingly show that FTY720 crosses the blood–brain barrier, where it is thought to act on S1P receptors on cells within the central nervous system, such as astrocytes, oligodendrocytes or microglia. Here we discuss the evidence showing that FTY720 also plays a role in remyelination and repair within the brain. While the mechanisms of action still require firm elucidation, it is clear that FTY720 could also be reparative, extending its therapeutic potential for multiple sclerosis.


2010 ◽  
Vol 84 (21) ◽  
pp. 11030-11044 ◽  
Author(s):  
Susan J. Bender ◽  
Judith M. Phillips ◽  
Erin P. Scott ◽  
Susan R. Weiss

ABSTRACT Coronavirus infection of the murine central nervous system (CNS) provides a model for studies of viral encephalitis and demyelinating disease. Mouse hepatitis virus (MHV) neurotropism varies by strain: MHV-A59 causes mild encephalomyelitis and demyelination, while the highly neurovirulent strain JHM.SD (MHV-4) causes fatal encephalitis with extensive neuronal spread of virus. In addition, while neurons are the predominant CNS cell type infected in vivo, the canonical receptor for MHV, the carcinoembryonic antigen family member CEACAM1a, has been demonstrated only on endothelial cells and microglia. In order to investigate whether CEACAM1a is also expressed in other cell types, ceacam1a mRNA expression was quantified in murine tissues and primary cells. As expected, among CNS cell types, microglia expressed the highest levels of ceacam1a, but lower levels were also detected in oligodendrocytes, astrocytes, and neurons. Given the low levels of neuronal expression of ceacam1a, primary neurons from wild-type and ceacam1a knockout mice were inoculated with MHV to determine the extent to which CEACAM1a-independent infection might contribute to CNS infection. While both A59 and JHM.SD infected small numbers of ceacam1a knockout neurons, only JHM.SD spread efficiently to adjacent cells in the absence of CEACAM1a. Quantification of mRNA for the ceacam1a-related genes ceacam2 and psg16 (bCEA), which encode proposed alternative MHV receptors, revealed low ceacam2 expression in microglia and oligodendrocytes and psg16 expression exclusively in neurons; however, only CEACAM2 mediated infection in human 293T cells. Therefore, neither CEACAM2 nor PSG16 is likely to be an MHV receptor on neurons, and the mechanism for CEACAM1a-independent neuronal spread of JHM.SD remains unknown.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 846
Author(s):  
Gitishree Das ◽  
Han-Seung Shin ◽  
Rosa Tundis ◽  
Sandra Gonçalves ◽  
Ourlad Alzeus G. Tantengco ◽  
...  

Valerianaceae, the sub-family of Caprifoliaceae, contains more than 300 species of annual and perennial herbs, worldwide distributed. Several species are used for their biological properties while some are used as food. Species from the genus Valeriana have been used for their antispasmodic, relaxing, and sedative properties, which have been mainly attributed to the presence of valepotriates, borneol derivatives, and isovalerenic acid. Among this genus, the most common and employed species is Valerianaofficinalis. Although valerian has been traditionally used as a mild sedative, research results are still controversial regarding the role of the different active compounds, the herbal preparations, and the dosage used. The present review is designed to summarize and critically describe the current knowledge on the different plant species belonging to Valerianaceae, their phytochemicals, their uses in the treatment of different diseases with particular emphasis on the effects on the central nervous system. The available information on this sub-family was collected from scientific databases up until year 2020. The following electronic databases were used: PubMed, Scopus, Sci Finder, Web of Science, Science Direct, NCBI, and Google Scholar. The search terms used for this review included Valerianaceae, Valeriana, Centranthus, Fedia, Patrinia, Nardostachys, Plectritis, and Valerianella, phytochemical composition, in vivo studies, Central Nervous System, neuroprotective, antidepressant, antinociceptive, anxiolytic, anxiety, preclinical and clinical studies.


2021 ◽  
pp. 106689692199356
Author(s):  
Fleur Cordier ◽  
Lars Velthof ◽  
David Creytens ◽  
Jo Van Dorpe

Acute disseminated encephalomyelitis (ADEM) is a rare immune-mediated inflammatory and demyelinating disorder of the central nervous system. Its characteristic perivenular demyelination and inflammation aid in the differential diagnosis with other inflammatory demyelinating diseases. Here, we present a clinical case of ADEM, summarize its histological hallmarks, and discuss pitfalls concerning the most important neuropathological differential diagnoses.


Sign in / Sign up

Export Citation Format

Share Document