scholarly journals Real-time studies of plasma membrane damage trigger cell apoptosis from sulfhydryl nanoparticles to support safety assessment of nanoscale materials

Author(s):  
Ting Wang ◽  
Guanwen Qu ◽  
Chenglong Cai ◽  
Yichuan Wang ◽  
Boru You ◽  
...  

Abstract Background: Sulfhydryl groups are present on the surface of nanoparticles in unburned vehicle exhaust and most air pollutants produced by combustion, which raises the risk for exposure of human. Sulfhydride nanoparticles not only penetrate the skin range from the stratum corneum to pass below the dermis, they also entering the systemis circulation from cell endocytosis pass way. The potential risk of skin and body healthy associated from sulfhydride nanoparticles were attach much attentions. It is important to illuminate the underlying toxicity of sulfhydride nanoparticles to humanbody, but the mechanisms underlying the toxicity of nanoparticles on cells remain unclear, especially the relationship from the damage of cells plasma membrane and the cell cycle.Methods: We performed time-response studies and cells-membrane interaction studies in C6 cells to observe the effects of 50nm and 200nm sulfhydryl nanoparticles on the activities, cell metabolism and cell cycle. The cells were exposed to 0, 10 or 20 Nano particles for 12, 36, 24, 48 or 72h to finish the particle- response studies. On the time of treatment, cells were collected to assess the expression of tight junction-associated proteins, P21, FBW7 and cyclin E. To further investigate the mechanisms underlying nanoparticle-induced dysregulation of tight junction-associated protein, we studied the change of lipid bilayers. Sum frequency generation optic spectrum was carried out to study the membrane change. Results: The results show that the smaller particles penetrate the plasma membrane and without bilayer disruption, whereas the larger one will pilled off one leaflet of the membrane, they are mostly trapped in endosomes. The larger ones result in slow but unrepairable cell necrosis and caused cell cycle regulation disorders via disturbing the expression of p21, cyclin E, and FBW-7. Conclusion: The results suggest that the destruction of membrane structure by the particles will cause irreversible biological damage, and particles entering cells through protein assisted process will increase the expression of cell cycle related proteins and cells self-repair can be observed from the in vitro experiments. From the interactions between mitochondria lipid model and nanoparticles, we deduced that, the efficiencies of nano-scaled drugs could be enhanced by altering the interaction models of nano systems and mitochondria. In the future, mitochondria membrane proteins would also be carefully explored to confirm their roles in the active mitochondrial uptake of nanoparticles and provide new channels for safe and effective mitochondria targeting drug delivery. Real-time studies of plasma membrane damage from sulfhydryl nanoparticles, and analysis the triggering of cell apoptosis, will support safety assessment of nanoscale materials.

2016 ◽  
Vol 113 (25) ◽  
pp. 6910-6915 ◽  
Author(s):  
Keiko Kono ◽  
Amr Al-Zain ◽  
Lea Schroeder ◽  
Makoto Nakanishi ◽  
Amy E. Ikui

Cellular wound healing or the repair of plasma membrane/cell wall damage (plasma membrane damage) occurs frequently in nature. Although various cellular perturbations, such as DNA damage, spindle misalignment, and impaired daughter cell formation, are monitored by cell cycle checkpoint mechanisms in budding yeast, whether plasma membrane damage is monitored by any of these checkpoints remains to be addressed. Here, we define the mechanism by which cells sense membrane damage and inhibit DNA replication. We found that the inhibition of DNA replication upon plasma membrane damage requires GSK3/Mck1-dependent degradation of Cdc6, a component of the prereplicative complex. Furthermore, the CDK inhibitor Sic1 is stabilized in response to plasma membrane damage, leading to cell integrity maintenance in parallel with the Mck1-Cdc6 pathway. Cells defective in both Cdc6 degradation and Sic1 stabilization failed to grow in the presence of plasma membrane damage. Taking these data together, we propose that plasma membrane damage triggers G1 arrest via Cdc6 degradation and Sic1 stabilization to promote the cellular wound healing process.


2021 ◽  
Vol 7 (13) ◽  
pp. eabc6345
Author(s):  
Shrawan Kumar Mageswaran ◽  
Wei Yuan Yang ◽  
Yogaditya Chakrabarty ◽  
Catherine M. Oikonomou ◽  
Grant J. Jensen

Cryo–electron tomography (cryo-ET) provides structural context to molecular mechanisms underlying biological processes. Although straightforward to implement for studying stable macromolecular complexes, using it to locate short-lived structures and events can be impractical. A combination of live-cell microscopy, correlative light and electron microscopy, and cryo-ET will alleviate this issue. We developed a workflow combining the three to study the ubiquitous and dynamic process of shedding in response to plasma membrane damage in HeLa cells. We found filopodia-like protrusions enriched at damage sites and acting as scaffolds for shedding, which involves F-actin dynamics, myosin-1a, and vacuolar protein sorting 4B (a component of the ‘endosomal sorting complex required for transport’ machinery). Overall, shedding is more complex than current models of vesiculation from flat membranes. Its similarities to constitutive shedding in enterocytes argue for a conserved mechanism. Our workflow can also be adapted to study other damage response pathways and dynamic cellular events.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dustin A. Ammendolia ◽  
William M. Bement ◽  
John H. Brumell

AbstractPlasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.


Biology Open ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. bio035287 ◽  
Author(s):  
Lars Nygård Skalman ◽  
Mikkel R. Holst ◽  
Elin Larsson ◽  
Richard Lundmark

1998 ◽  
Vol 110 (1) ◽  
pp. 79-83 ◽  
Author(s):  
Sally H. Ibbotson ◽  
Christopher R. Lambert ◽  
Michael N. Moran ◽  
Mary C. Lynch ◽  
Irene E. Kochevar

2019 ◽  
Author(s):  
Kai S. Beckwith ◽  
Marianne S. Beckwith ◽  
Sindre Ullmann ◽  
Ragnhild Sætra ◽  
Haelin Kim ◽  
...  

AbstractMycobacterium tuberculosis (Mtb) is a major global health problem and causes extensive cytotoxicity in patient cells and tissues. Here we define an NLRP3, caspase-1 and gasdermin D-mediated pathway to pyroptosis in human monocytes following exposure to Mtb. We demonstrate an ESX-1 mediated, contact-induced plasma membrane (PM) damage response that occurs during phagocytosis or from the cytosolic side of the PM after phagosomal rupture in Mtb infected cells. This PM injury in turn causes K+ efflux and activation of NLRP3 dependent IL-1β release and pyroptosis, facilitating the spread of Mtb to neighbouring cells. Further we reveal a dynamic interplay of pyroptosis with ESCRT-mediated PM repair. Collectively, these findings reveal a novel mechanism for pyroptosis and spread of infection acting through dual PM disturbances both during and after phagocytosis. We also highlight dual PM damage as a common mechanism utilized by other NLRP3 activators that have previously been shown to act through lysosomal damage.Graphical abstract


2019 ◽  
Vol 6 (4) ◽  
pp. 1219-1232 ◽  
Author(s):  
Saeed Nazemidashtarjandi ◽  
Amir M. Farnoud

Plasma membrane damage is one of the primary mechanisms through which engineered nanoparticles induce cell toxicity.


2006 ◽  
Vol 82 (6) ◽  
pp. 1712-1720 ◽  
Author(s):  
Nicole Cauchon ◽  
Moni Nader ◽  
Ghassan Bkaily ◽  
Johan E. Lier ◽  
Darel Hunting

2020 ◽  
Vol 21 (7) ◽  
pp. 2412 ◽  
Author(s):  
Uris Ros ◽  
Lohans Pedrera ◽  
Ana J. Garcia-Saez

Pyroptosis, necroptosis, and ferroptosis are well-characterized forms of regulated necrosis that have been associated with human diseases. During regulated necrosis, plasma membrane damage facilitates the movement of ions and molecules across the bilayer, which finally leads to cell lysis and release of intracellular content. Therefore, these types of cell death have an inflammatory phenotype. Each type of regulated necrosis is mediated by a defined machinery comprising protein and lipid molecules. Here, we discuss how the interaction and reshaping of these cellular components are essential and distinctive processes during pyroptosis, necroptosis, and ferroptosis. We point out that although the plasma membrane is the common target in regulated necrosis, different mechanisms of permeabilization have emerged depending on the cell death form. Pore formation by gasdermins (GSDMs) is a hallmark of pyroptosis, while mixed lineage kinase domain-like (MLKL) protein facilitates membrane permeabilization in necroptosis, and phospholipid peroxidation leads to membrane damage in ferroptosis. This diverse repertoire of mechanisms leading to membrane permeabilization contributes to define the specific inflammatory and immunological outcome of each type of regulated necrosis. Current efforts are focused on new therapies that target critical protein and lipid molecules on these pathways to fight human pathologies associated with inflammation.


Sign in / Sign up

Export Citation Format

Share Document