scholarly journals miR-3065-3p promotes stemness and metastasis by targeting CRLF1 in colorectal cancer

Author(s):  
Yi fan Li ◽  
Jing Xun ◽  
Bo tao Wang ◽  
Yuan Ma ◽  
Lan qiu Zhang ◽  
...  

Abstract Background: Colorectal cancer is one of the most common malignancy in the world. It has been reported that cancer stem cells (CSCs) serve as the primary drivers of tumorigenesis and tumor progression. There is an urgent need to explore novel molecules that regulate CSCs or their signatures. Increasing evidence has shown that miRNAs are involved in tumorigenesis and progression. Here, we aim to explore the regulatory effect and mechanism of miR-3065-3p on the stemness of colorectal cancer.Methods: The expression of miR-3065-3p in colorectal cancer and the association of miR-3065-3p expression with prognosis of patients with colorectal cancer were analyzed using TCGA dataset or clinical cases. Gain of function in different models, including colorectal cancer cell lines and orthotopic xenograft or liver metastatic mouse model, were used to investigate the effects of miR-3065-3p on colorectal cancer stemness adn metastasis in vitro and in vivo. Cancer stemness was analyzed by detecting the ability of migration and invasion, NANOG, OCT4, and SOX2 expression, ALDH activity and sphere formation. In addition, the interaction of miR-3065-3p and cytokine receptor-like factor 1 (CRLF1) was analyzed theoretically and identified by the luciferase reporter assay. Moreover, the correlation between CRLF1 expression and miR-3065-3p was analyzed in colorectal cancer tissues. Finally, the effect of CRLF1 on the stemness and metastasis of colorectal cancer in vitro and in vivo was assessed.Results: In this report, we found that miR-3065-3p was overexpressed in colorectal cancer and that its high expression was associated with poor prognosis of patients with colorectal cancer. miR-3065-3p promotes the stemness and metastasis of colorectal cancer. Furthermore, CRLF1 was the downstream target of miR-3065-3p and inhibited the stemness of colorectal cancer. In addition, CRLF1 expression was negatively correlated with miR-3065-3p in colorectal cancer tissues. In addition, CRLF1 mediated the effects of miR-3065-3p on promoting stemness-related transcription factor expression in colorectal cancer cells.Conclusion: Our data suggest that miR-3065-3p promoted the stemness and metastasis of colorectal cancer by targeting CRLF1. miR-3065-3p might serve as a promising prognostic marker as well as a therapeutic target for colorectal cancer.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yifan Li ◽  
Jing Xun ◽  
Botao Wang ◽  
Yuan Ma ◽  
Lanqiu Zhang ◽  
...  

Abstract Background Colorectal cancer is one of the most common malignancy in the world. It has been reported that cancer stem cells (CSCs) serve as the primary drivers of tumorigenesis and tumor progression. There is an urgent need to explore novel molecules that regulate CSCs or their signatures. Increasing evidence has shown that miRNAs are involved in tumorigenesis and progression. Here, we aim to explore the regulatory effect and mechanism of miR-3065-3p on the stemness of colorectal cancer. Methods The expression of miR-3065-3p in colorectal cancer and the association of miR-3065-3p expression with prognosis of patients with colorectal cancer were analyzed using TCGA dataset or clinical cases. Gain or loss of function in different models, including colorectal cancer cell lines and orthotopic xenograft or liver metastatic mouse model, were used to investigate the effects of miR-3065-3p on colorectal cancer stemness and metastasis in vitro and in vivo. Cancer stemness was analyzed by detecting the ability of migration and invasion, NANOG, OCT4, and SOX2 expression, ALDH activity and sphere formation. In addition, the interaction of miR-3065-3p and cytokine receptor-like factor 1 (CRLF1) was analyzed theoretically and identified by the luciferase reporter assay. Moreover, the correlation between CRLF1 expression and miR-3065-3p was analyzed in colorectal cancer tissues. Finally, the effect of CRLF1 on the stemness and metastasis of colorectal cancer in vitro and in vivo was assessed. Results In this report, we found that miR-3065-3p was overexpressed in colorectal cancer and that its high expression was associated with poor prognosis of patients with colorectal cancer. miR-3065-3p promotes the stemness and metastasis of colorectal cancer. Furthermore, CRLF1 was the downstream target of miR-3065-3p and inhibited the stemness of colorectal cancer. In addition, CRLF1 expression was negatively correlated with miR-3065-3p in colorectal cancer tissues. And, CRLF1 mediated the effects of miR-3065-3p on promoting stemness of colorectal cancer cells. Conclusion Our data suggest that miR-3065-3p promoted the stemness and metastasis of colorectal cancer by targeting CRLF1. miR-3065-3p might serve as a promising prognostic marker as well as a therapeutic target for colorectal cancer.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingpeng Wang ◽  
Shuyuan Li ◽  
Gaofeng Zhang ◽  
Huihua Han

Abstract Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fei Pan ◽  
Dongqing Zhang ◽  
Na Li ◽  
Mei Liu

circRNAs (circular RNAs) are a family of noncoding RNAs and have diverse physiological and pathological functions. However, the functions and mechanisms of circRNAs in the development and progression of colorectal cancer (CRC) remain largely unknown. Here, we aimed to explore the functions and roles of circFAT1(e2) in CRC. qRT-PCR revealed that circFAT1(e2) in CRC tumor tissues was upregulated compared with that in adjacent normal tissues and was also upregulated in CRC cell lines. Small interfering RNAs (siRNAs) against circFAT1(e2) were used to decrease the expression of circFAT1(e2) in HCT116 and RKO cells in vitro. The roles of circFAT1(e2) in CRC cell metastasis and proliferation were then determined by transwell and CCK-8 assays. The results showed that circFAT1(e2) silencing markedly suppressed CRC growth. Moreover, we identified circFAT1(e2) as a promoter of CRC metastasis. Knockdown of circFAT1(e2) evidently reduced HCT116 and RKO cell migration and invasion. Furthermore, the regulatory relationship between circFAT1(e2) and its target miRNAs was verified by a luciferase reporter assay. We demonstrated that circFAT1(e2) could sponge miR-30e-5p, which regulated the expression level of integrin α6 (ITGA6), the downstream target gene of miR-30e-5p. Rescue assays demonstrated that knockdown of miR-30e-5p enhanced CRC proliferation and migration via ITGA6. Taken together, our results reveal the novel oncogenic roles of circFAT1(e2) in CRC through the miR-30e-5p/ITGA6 axis.


Author(s):  
Xinyang Lu ◽  
Zhiqiang Liu ◽  
Xiaofei Ning ◽  
Lunhua Huang ◽  
Biao Jiang

The long noncoding RNA HOX transcript antisense RNA (HOTAIR) has been found to be overexpressed in many human malignancies and involved in tumor progression and metastasis. Although the downstream target through which HOTAIR modulates tumor metastasis is not well known, evidence suggests that microRNA-197 (miR-197) might be involved in this event. In the present study, the significance of HOTAIR and miR-197 in the progression of colorectal cancer was detected in vitro and in vivo. We found that HOTAIR expression was significantly increased in colorectal cancer cells and tissues. In contrast, the expression of miR-197 was obviously decreased. We further demonstrated that HOTAIR knockdown promoted apoptosis and inhibited cell proliferation, migration, and invasion in vitro and in vivo. Moreover, HOTAIR modulated the progression of colorectal cancer by competitively binding miR-197. Taken together, our study has identified a novel pathway through which HOTAIR exerts its oncogenic role and provided a molecular basis for potential applications of HOTAIR in the prognosis and treatment of colorectal cancer.


2021 ◽  
Author(s):  
Zhang Jieling ◽  
Li Kai ◽  
Zheng Huifen ◽  
Zhu Yiping

Abstract Background: MicroRNAs play an important role in the genesis and progression of tumors, including colorectal cancer (CRC), which has a high morbidity and mortality rate. In this research, the role of miR-495-3p and HMGB1 in CRC was investigated.Methods: We performed qRT-PCR to detect the expression of miR-495-3p in colorectal cancer tissues and cell lines. Functional experiments such as CCK-8 assay, EDU assay, Transwell assay and apoptosis assay were conducted to explore the effects of miR-495-3p on the proliferation, migration and apoptosis of CRC cells in vitro. Then, the use of database prediction, dual-luciferase reporter gene assay and functional experiments verified the role of miR-495-3p target gene HMGB1 in CRC. Finally, rescue experiments was performed to investigate whether overexpression of HMGB1 could reverse the inhibitory effect of miR-495-3p on CRC cell proliferation in vivo and in vitro.Results: miR-495-3p was down-regulated in colorectal cancer tissues and cell lines, and could inhibit the proliferation and migration of colorectal cancer cells, and promote cell apoptosis. The database prediction and dual-luciferase reporter gene assay showed that HMGB1 was the downstream target gene of miR-495-3p. We finally demonstrated that miR-495-3p inhibited CRC cell proliferation by targeting HMGB1 in vitro and in vivo.Conclusion: Our research shows that miR-495-3p inhibits the progression of colorectal cancer by down-regulating the expression of HMGB1, which indicates that miR-495-3p may become a potential therapeutic target for colorectal cancer.


2020 ◽  
Author(s):  
Peng Shen ◽  
Lili Qu ◽  
Jingjing Wang ◽  
Quchen Ding ◽  
Chuanwen Zhou ◽  
...  

Abstract Background Long intergenic non-protein coding RNA 342 (LINC00342) has been identified as a novel oncogene, however, the functional role of LINC00342 in colorectal cancer (CRC) remained unclear. Methods The expression of LINC00342 was detected by real-time PCR. Cell proliferation, migration and invasion and xenograft model were examined to analyze the biological functions of LINC00342 in vitro and in vivo. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to identify the target interactions between LINC00342, miR-19a-3p and aminopeptidase like 1 (NPEPL1). Results LINC00342 was highly expressed in CRC. Downregulation of LINC00342 inhibited cell proliferation and metastasis of CRC cells. Moreover, knocking down LINC00342 could weaken the tumor growth in vivo. Mechanistic investigation revealed that LINC00342 may sponge miR-19a-3p to regulate NPEPL1 expression. Further investigation indicated that the oncogenesis facilitated by LINC00342 was inhibited by NPEPL1 depletion.Conclusion LINC00342 promoted CRC progression by competitively binding miR-19a-3p with NPEPL1.


2020 ◽  
Author(s):  
Chen-Hua Dong ◽  
Tao Jiang ◽  
Hang Yin ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

Abstract Background: Lamin B2 (LMNB2) is involved in chromatin remodelling and the rupture and reorganization of the nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, there are few reports on the expression and function of LMNB2 in colorectal cancer.Methods: A tissue microarray (TAM) was used to detect the expression of LMNB2 in 226 colorectal cancer tissues and the corresponding adjacent tissues. The CCK-8 colorimetric assay, EdU incorporation analyses, colony formation assays and cell cycle experiments were used to evaluate the effect of LMNB2 on colorectal cancer cell proliferation in vitro, and a mouse tumorigenic model was used to study the effect of LMNB2 on colorectal cancer cells in vivo. The main pathways and genes regulated by LMNB2 were detected by RNA sequencing. Dual-luciferase reporter assays were conducted to test the direct binding between LMNB2 and p21, and ChIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter.Results: The results showed that LMNB2 expression is increased in colorectal cancer tissues. Highly expressed LMNB2 is associated with tumour size and TNM stage. Multivariate Cox analysis showed that LMNB2 can be used as an independent prognostic factor in patients with colorectal cancer. Functional assays indicated that LMNB2 obviously enhanced cell proliferation by promoting cell cycle progression in vitro and in vivo. LMNB2 facilitates cell proliferation via regulating the p21 promoter, whereas LMNB2 had no effect on cell apoptosis in terms of mechanism.Conclusion: LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, indicating the potential value of LMNB2 as a clinical prognostic marker and molecular therapeutic target.


2021 ◽  
Author(s):  
Hong Liang ◽  
Qiuyan Zhao ◽  
Zhonglin Zhu ◽  
Chao Zhang ◽  
Hui Zhang

Abstract Background: Long non-coding RNAs (lncRNAs) have been elucidated to participate in the development and progression of various cancers. In this study, we aim to explore the underlying functions and mechanisms of LINC00958 in colorectal cancer. Methods: LINC00958 expression in colorectal cancer tissues was examined by qRT-PCR. The associations between LINC00958 expression with clinical characteristics and prognosis were evaluated. The biological functions of LINC00958 were detected by CCK-8, MTT, colony formation and Flow cytometric analyses. RNA-pull down, RIP and luciferase reporter assays were used to confirm the regulation of LINC00958 on miR-422a. Rescue experiments were performed to detect the effects of miR-422a on the roles of LINC00958. Results: LINC00958 was upregulated in colorectal cancer tissues and cell lines; high LINC00958 level was significantly associated with tumor differentiation, T stage and TNM stage, and also predicted poor prognosis. Cell experiments showed that LINC00958 promoted cell proliferation and suppressed apoptosis and the sensitivity of radiotherapy in vitro, and promoted cell growth in vivo. Bioinformatics analysis predicted the binding site of miR-422a on LINC00958. Mechanistically, RNA-pull down, RIP and luciferase reporter assays demonstrated that LINC00958 specially targeted miR-422a. In addition, we provided evidence that miR-422a suppressed MAPK1 expression through directly binding to the 3’-UTR of MAPK1, thereby inhibiting cell proliferation and enhancing apoptosis and the radiosensitivity. Furthermore, miR-422a rescued the roles of LINC00958 on promoting MAPK1 expression and cell proliferation and decreasing apoptosis and the radiosensitivity. Conclusions: LINC00958 promoted MAPK1 expression and cell proliferation and suppressed apoptosis and the radiosensitivity through targeting miR-422a, highlighting a potential biomarker for the prognosis and treatment of colorectal cancer.


2020 ◽  
Vol 134 (14) ◽  
pp. 1973-1990
Author(s):  
Huaiming Wang ◽  
Rongkang Huang ◽  
Wentai Guo ◽  
Xiusen Qin ◽  
Zifeng Yang ◽  
...  

Abstract Colorectal cancer (CRC) is often diagnosed at later stages after it has metastasized to other organs. The development of chemoresistance also contributes to a poor prognosis. Therefore, an increased understanding of the metastatic properties of CRC and chemoresistance could improve patient survival. CUGBP elav-like family member 1 (CELF1) is an RNA-binding protein, which is overexpressed in many human malignant tumors. However, the influence of CELF1 in CRC is unclear. V-ets erythroblastosis virus E26 oncogene homologue 2 (ETS2) is an evolutionarily conserved proto-oncogene known to be overexpressed in a variety of human cancers including CRC. In thespresent tudy, we investigated the association between CELF1 and ETS2 in CRC tumorigenesis and oxaliplatin (L-OHP) resistance. We found a positive correlation between the elevated expression of CELF1 and ETS2 in human CRC tissues. Overexpression of CELF1 increased CRC cell proliferation, migration, and invasion in vitro and in a xenograft tumor growth model in vivo, and induced resistance to L-OHP. In contrast, CELF1 knockdown improved the response of CRC cells to L-OHP. Overexpression of ETS2 increased the malignant behavior of CRC cells (growth, migration, and invasion) and L-OHP resistance in vitro. Moreover, L-OHP resistance induced by CELF1 overexpression was reversed by ETS2 knockdown. The results of luciferase reporter and ribonucleoprotein immunoprecipitation assays indicated that CELF1 up-regulates ETS2 by binding to its 3′-UTR. Taken together, our findings have identified that CELF1 regulates ETS2 in a mechanism that results in CRC tumorigenesis and L-OHP resistance, and CELF1 may be a promising target for overcoming chemoresistance in CRC.


Author(s):  
Xiaojian Zhu ◽  
Fanqin Bu ◽  
Ting Tan ◽  
Qilin Luo ◽  
Jinfeng Zhu ◽  
...  

Abstract Background Accumulating evidence indicates that long non-coding RNAs (lncRNAs) acting as crucial regulators in tumorigenesis. However, its biological functions of lncRNAs in colorectal cancer (CRC) have not been systematically clarified. Methods An unbiased screening was performed to identify disregulated lncRNAs revealed to be implicated in CRC carcinogenesis according to an online-available data dataset. In situ hybridization (ISH), RT-qPCR and RNA fluorescence in situ hybridization (RNA-FISH) were applied to detect RP11-757G1.5 expression in CRC tissues and cell lines. The associations of RP11-757G1.5 with clinicopathological characteristics were analyzed. Their effects on prognosis were analyzed by the Kaplan-Meier analysis, Log-rank test, Univariate and Multivariate Cox regression analysis. The potential biological function of RP11-757G1.5 in CRC was investigated by Colony formation, Edu cell proliferation, Flow cytometry, Wound healing and Transwell assays. Bioinformatics binding site analysis, Luciferase reporter assay, Ago2 immunoprecipitation assays, RNA pull-down assay, RT-qPCR and Western blotting were utilized to demonstrate the mechanism of RP11-757G1.5 acts as a molecular sponge of miR-139-5p to regulate the expression of YAP1. Finally, we further explore the potential role of RP11-757G1.5 in CRC orthotopic xenografts in vivo. Results We discovered a novel oncogenic lncRNA RP11-757G1.5, that was overexpressed in CRC tissues, especially in aggressive cases. Moreover, up-regulation of RP11-757G1.5 strongly correlated with poor clinical outcomes of patients with CRC. Functional analyses revealed that RP11-757G1.5 promoted cell proliferation in vitro and in vivo. Furthermore, RP11-757G1.5 stimulated cell migration and invasion in vitro and in vivo. Mechanistic studies illustrated that RP11-757G1.5 regulated the expression of YAP1 through sponging miR-139-5p and inhibiting its activity thereby promoting CRC progression and development. Conclusions Altogether, these results reveal a novel RP11-757G1.5/miR-139-5p/YAP1 regulatory axis that participates in CRC carcinogenesis and progression.


Sign in / Sign up

Export Citation Format

Share Document