A User-Friendly Tool For Cloud-Based Whole Slide Image Segmentation, With Examples From Renal Histopathology
Abstract We have developed Histo-Cloud, a tool for segmentation of whole slide images (WSIs) that has an easy-to-use graphical user interface. This tool runs a state-of-the-art convolutional neural network (CNN) for segmentation of WSIs in the cloud and allows the extraction of features from segmented regions for further analysis. By segmenting glomeruli, interstitial fibrosis and tubular atrophy, and vascular structures from renal and non-renal WSIs, we demonstrate the scalability, best practices for transfer learning, and effects of dataset variability. Finally, we demonstrate an application for animal model research, analyzing glomerular features in murine models of aging, diabetic nephropathy, and HIV associated nephropathy. The ability to access this tool over the internet will facilitate widespread use by computational non-experts. Histo-Cloud is open source and adaptable for segmentation of any histological structure regardless of stain.