scholarly journals Association Between Ambient Air Pollutants and Meteorological Factors With SARS-CoV-2 Transmission and Mortality in India: an Exploratory Study

Author(s):  
Sumit Aggarwal ◽  
Sivaraman Balaji ◽  
Tanvi Singh ◽  
Geetha R Menon ◽  
Sandeep Mandal ◽  
...  

Abstract Background: The Coronavirus disease 2019 (COVID-19) pandemic poses a serious public health concern worldwide. Certain regions of the globe were severely affected in terms of prevalence and mortality than other. Although the cause for this pattern is not clearly understood, lessons learned from previous epidemics and emerging evidences suggest the major role of ecological factors like ambient air pollutants (AAP) and meteorological parameters in increased COVID-19 incidence. The present study aimed to understand the impact of these factors on SARS-CoV-2 transmission and their associated mortality in major cities of India.Methods: This study used secondary AAP, meteorological and COVID-19 data from official websites for the period January-November 2020, which were divided into Pre-lockdown (January-March 2020), Phase I (April to June 2020) and Phase II (July to November 2020). After comprehensive screening, five major cities that includes 48 CPCB monitoring stations collecting daily data of ambient temperature, particulate matter PM2.5 and 10 were analysed. Spearman and Kendall’s rank correlation test was performed to understand the association between SARS-CoV-2 transmission and AAP and, meteorological variables. Similarly, case fatality rate (CFR) was determined to compute the correlation between AAP and COVID-19 related morality.Results: The level of air pollutants in major cities were significantly reduced during Phase I compared to Pre-lock down and increased upon Phase II in all the cities. During the Phase II in Delhi, the strong significant positive correlation was observed between the AAP and SARS-CoV-2 transmission. However, in Bengaluru, Hyderabad, Kolkata and Mumbai AAP levels were moderate and no correlation was noticed. The relation between AT and SARS-CoV-2 transmission was inconclusive as both positive and negative correlation observed. In addition, Delhi and Kolkata showed a positive association between long-term exposure to the AAP and COVID-19 CFR. Conclusion: Our findings support the hypothesis that the particulate matter upon exceeding the satisfactory level serves as an important cofactor in increasing the risk of SARS-CoV-2 transmission and related mortality. These findings would help public health experts to understand the SARS-CoV-2 transmission against ecological variables in India and provides supporting evidence to healthcare policymakers and government agencies for formulating strategies to combat the COVID-19.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Sumit Aggarwal ◽  
Sivaraman Balaji ◽  
Tanvi Singh ◽  
Geetha R. Menon ◽  
Sandip Mandal ◽  
...  

Abstract Background The Coronavirus disease 2019 (COVID-19) pandemic poses a serious public health concern worldwide. Certain regions of the globe were severely affected in terms of prevalence and mortality than other. Although the cause for this pattern is not clearly understood, lessons learned from previous epidemics and emerging evidences suggest the major role of ecological factors like ambient air pollutants (AAP) and meteorological parameters in increased COVID-19 incidence. The present study aimed to understand the impact of these factors on SARS-CoV-2 transmission and their associated mortality in major cities of India. Methods This study used secondary AAP, meteorological and COVID-19 data from official websites for the period January-November 2020, which were divided into Pre-lockdown (January-March 2020), Phase I (April to June 2020) and Phase II (July to November 2020) in India. After comprehensive screening, five major cities that includes 48 CPCB monitoring stations collecting daily data of ambient temperature, particulate matter PM2.5 and 10 were analysed. Spearman and Kendall’s rank correlation test was performed to understand the association between SARS-CoV-2 transmission and AAP and, meteorological variables. Similarly, case fatality rate (CFR) was determined to compute the correlation between AAP and COVID-19 related morality. Results The level of air pollutants in major cities were significantly reduced during Phase I compared to Pre-lock down and increased upon Phase II in all the cities. During the Phase II in Delhi, the strong significant positive correlation was observed between the AAP and SARS-CoV-2 transmission. However, in Bengaluru, Hyderabad, Kolkata and Mumbai AAP levels were moderate and no correlation was noticed. The relation between AT and SARS-CoV-2 transmission was inconclusive as both positive and negative correlation observed. In addition, Delhi and Kolkata showed a positive association between long-term exposure to the AAP and COVID-19 CFR. Conclusion Our findings support the hypothesis that the particulate matter upon exceeding the satisfactory level serves as an important cofactor in increasing the risk of SARS-CoV-2 transmission and related mortality. These findings would help public health experts to understand the SARS-CoV-2 transmission against ecological variables in India and provides supporting evidence to healthcare policymakers and government agencies for formulating strategies to combat the COVID-19.


2021 ◽  
Vol 22 (19) ◽  
pp. 10645
Author(s):  
Krystian Mokrzyński ◽  
Olga Krzysztyńska-Kuleta ◽  
Marcin Zawrotniak ◽  
Michał Sarna ◽  
Tadeusz Sarna

The human skin is exposed to various environmental factors including solar radiation and ambient air pollutants. Although, due to its physical and biological properties, the skin efficiently protects the body against the harm of environmental factors, their excessive levels and possible synergistic action may lead to harmful effects. Among particulate matter present in ambient air pollutants, PM2.5 is of particular importance for it can penetrate both disrupted and intact skin, causing adverse effects to skin tissue. Although certain components of PM2.5 can exhibit photochemical activity, only a limited amount of data regarding the interaction of PM2.5 with light and its effect on skin tissue are available. This study focused on light-induced toxicity in cultured human keratinocytes, which was mediated by PM2.5 obtained in different seasons. Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM) were employed to determine sizes of the particles. The ability of PM2.5 to photogenerate free radicals and singlet oxygen was studied using EPR spin-trapping and time-resolved singlet oxygen phosphorescence, respectively. Solar simulator with selected filters was used as light source for cell treatment to model environmental lightning conditions. Cytotoxicity of photoexcited PM2.5 was analyzed using MTT assay, PI staining and flow cytometry, and the apoptotic pathway was further examined using Caspase-3/7 assay and RT-PCR. Iodometric assay and JC-10 assay were used to investigate damage to cell lipids and mitochondria. Light-excited PM2.5 were found to generate free radicals and singlet oxygen in season-dependent manner. HaCaT cells containing PM2.5 and irradiated with UV-Vis exhibited oxidative stress features–increased peroxidation of intracellular lipids, decrease of mitochondrial membrane potential, enhanced expression of oxidative stress related genes and apoptotic cell death. The data indicate that sunlight can significantly increase PM2.5-mediated toxicity in skin cells.


Author(s):  
Radhika M. Patil ◽  
Dr. H. T. Dinde ◽  
Sonali. K. Powar

Day by day the air pollution becomes serious concern in India as well as in overall world. Proper or accurate prediction or forecast of Air Quality or the concentration level of other Ambient air pollutants such as Sulfur Dioxide, Nitrogen Dioxide, Carbon Monoxide, Particulate Matter having diameter less than 10µ, Particulate Matter having diameter less than 2.5µ, Ozone, etc. is very important because impact of these factors on human health becomes severe. This literature review focuses on the various techniques used for prediction or modelling of Air Quality Index (AQI) and forecasting of future concentration levels of pollutants that may cause the air pollution so that governing bodies can take the actions to reduce the pollution.


2020 ◽  
Author(s):  
Xiaowen Shao ◽  
Haoxiang Cheng ◽  
Jonathan Zhou ◽  
Jushan zhang ◽  
Yujie Zhu ◽  
...  

Abstract Background Impaired in utero fetal growth trajectory may have long term health consequences of the newborns and increase risk of adulthood metabolic diseases. Prenatal exposure to air pollution has been linked to fetal development restriction; however, the impact of exposure to ambient air pollutants on the entire course of intrauterine fetal development has not been comprehensively investigated. Methods During 2015 – 2018, two cohorts of mother-infant dyads (N=678 and 227) were recruited in Shanghai China, from which three categories of data were systematically collected: (1) daily exposure to six air pollutants during pregnancy, (2) fetal biometry in the 2 nd (gestational week 24, [GW24]) and 3 rd trimester (GW36), and (3) neonatal outcomes at birth. We investigated the impact of prenatal exposure to a mixture of air pollutants on the trajectory of fetal development during the course of gestation, adjusting for a broad set of potential confounds. Results Prenatal exposure to PM 2.5 , PM 10 , SO 2 and O 3 significantly reduced fetal biometry at GW24, where SO 2 had the most potent effect. For every 10 ug/m 3 increment increase of daily SO 2 exposure during the 1 st trimester shortened femur length by 2.20 mm (p=6.7E-21) translating to 5.3% reduction from population average. Prenatal air pollution exposure also decreased fetal biometry at GW36 with attenuated effect size. Comparing to the lowest exposed quartile, fetus in the highest exposed quartile had 6.3% (p=3.5E-5) and 2.1% (p=2.4E-3) lower estimated intrauterine weight in GW24 and GW36, respectively; however, no difference in birth weight was observed, indicating a rapid catch-up growth in the 3 rd trimester. Conclusions To our knowledge, for the first time, we demonstrated the impact of prenatal exposure to ambient air pollutants on the course of intrauterine fetal development. The altered growth trajectory and rapid catch-up growth in associated with high prenatal exposure may lead to long-term predisposition for adulthood metabolic disorders.


Author(s):  
Jianli Zhou ◽  
Linyuan Qin ◽  
Nan Liu

AbstractEmerging evidences have confirmed effects of meteorological factors on novel coronavirus disease 2019 (COVID-19). However, few studies verify the impact of air pollutants on this pandemic. This study aims to explore the association of ambient air pollutants, meteorological factors and their interactions effect confirmed case counts of COVID-19 in 120 Chinese cities. Here, we collected total confirmed cases of COVID-19 by combining with meteorological factors and air pollutants data from 15th January 2020 to 18th March 2020 in 120 Chinese cities. Spearman correlation analysis was employed to estimate the association between two variables; univariate and multivariate negative binomial regression analysis were applied to explore the effect of air pollutants and meteorological parameters on the COVID-19 confirmed cases. Positive associations were found between the confirmed cases of COVID-19 and carbon monoxide (CO), aerodynamic particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5), relative humidity (RH) and air pressure (AP). And negative association was found for sulfur dioxide (SO2). In addition, multivariate negative binomial regression analysis suggested that confirmed cases of COVID-19 was positively correlated with ozone (O3) in lag 0 day while it was negatively associated with wind velocity (WV) in lag 14 days, and the pollutants-meteorological factors interactions also associate with COVID-19. In conclusions, air pollutants and meteorological factors and their interactions all associate with COVID-19.


2020 ◽  
Vol 41 (9) ◽  
pp. 1011-1015 ◽  
Author(s):  
Ying Jiang ◽  
Xiao-Jun Wu ◽  
Yan-Jun Guan

AbstractObjective:To determine whether ambient air pollutants and meteorological variables are associated with daily COVID-19 incidence.Design:A retrospective cohort from January 25 to February 29, 2020.Setting:Cities of Wuhan, Xiaogan, and Huanggang, China.Patients:The COVID-19 cases detected each day.Methods:We collected daily data of COVID-19 incidence, 8 ambient air pollutants (particulate matter of ≤2.5 µm [PM2.5], particulate matter ≤10 µm [PM10], sulfur dioxide [SO2], carbon monoxide [CO], nitrogen dioxide [NO2], and maximum 8-h moving average concentrations for ozone [O3-8h]) and 3 meteorological variables (temperature, relative humidity, and wind) in China’s 3 worst COVID-19–stricken cities during the study period. The multivariate Poisson regression was performed to understand their correlation.Results:Daily COVID-19 incidence was positively associated with PM2.5 and humidity in all cities. Specifically, the relative risk (RR) of PM2.5 for daily COVID-19 incidences were 1.036 (95% confidence interval [CI], 1.032–1.039) in Wuhan, 1.059 (95% CI, 1.046–1.072) in Xiaogan, and 1.144 (95% CI, 1.12–1.169) in Huanggang. The RR of humidity for daily COVID-19 incidence was consistently lower than that of PM2.5, and this difference ranged from 0.027 to 0.111. Moreover, PM10 and temperature also exhibited a notable correlation with daily COVID-19 incidence, but in a negative pattern The RR of PM10 for daily COVID-19 incidence ranged from 0.915 (95% CI, 0.896–0.934) to 0.961 (95% CI, 0.95–0.972, while that of temperature ranged from 0.738 (95% CI, 0.717–0.759) to 0.969 (95% CI, 0.966–0.973).Conclusions:Our data show that PM2.5 and humidity are substantially associated with an increased risk of COVID-19 and that PM10 and temperature are substantially associated with a decreased risk of COVID-19.


2019 ◽  
Vol 19 (17) ◽  
pp. 11199-11212 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Mari Kauhaniemi ◽  
Jaakko Kukkonen ◽  
Kaarle Kupiainen ◽  
Ari Karppinen ◽  
...  

Abstract. We have numerically evaluated how effective selected potential measures would be for reducing the impact of road dust on ambient air particulate matter (PM10). The selected measures included a reduction of the use of studded tyres on light-duty vehicles and a reduction of the use of salt or sand for traction control. We have evaluated these measures for a street canyon located in central Helsinki for four years (2007–2009 and 2014). Air quality measurements were conducted in the street canyon for two years, 2009 and 2014. Two road dust emission models, NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and FORE (Forecasting Of Road dust Emissions), were applied in combination with the Operational Street Pollution Model (OSPM), a street canyon dispersion model, to compute the street increments of PM10 (i.e. the fraction of PM10 concentration originating from traffic emissions at the street level) within the street canyon. The predicted concentrations were compared with the air quality measurements. Both road dust emission models reproduced the seasonal variability of the PM10 concentrations fairly well but under-predicted the annual mean values. It was found that the largest reductions of concentrations could potentially be achieved by reducing the fraction of vehicles that use studded tyres. For instance, a 30 % decrease in the number of vehicles using studded tyres would result in an average decrease in the non-exhaust street increment of PM10 from 10 % to 22 %, depending on the model used and the year considered. Modelled contributions of traction sand and salt to the annual mean non-exhaust street increment of PM10 ranged from 4 % to 20 % for the traction sand and from 0.1 % to 4 % for the traction salt. The results presented here can be used to support the development of optimal strategies for reducing high springtime particulate matter concentrations originating from road dust.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
C. M. Toledo-Corral ◽  
T. L. Alderete ◽  
M. M. Herting ◽  
R. Habre ◽  
A. K. Peterson ◽  
...  

Abstract Background Hypothalamic-pituitary-adrenal (HPA)-axis dysfunction has been associated with a variety of mental health and cardio-metabolic disorders. While causal models of HPA-axis dysregulation have been largely focused on either pre-existing health conditions or psychosocial stress factors, recent evidence suggests a possible role for central nervous system activation via air pollutants, such as nitrogen dioxide (NO2), ozone (O3) and particulate matter (PM). Therefore, in an observational study of Latino youth, we investigated if monthly ambient NO2, O3, and PM with aerodynamic diameter ≤ 2.5 (PM2.5) exposure were associated with morning serum cortisol levels. Methods In this cross-sectional study, morning serum cortisol level was assessed after a supervised overnight fast in 203 overweight and obese Latino children and adolescents (female/male: 88/115; mean age: 11.1 ± 1.7 years; pre-pubertal/pubertal/post-pubertal: 85/101/17; BMI z-score: 2.1 ± 0.4). Cumulative concentrations of NO2, O3 and PM2.5 were spatially interpolated at the residential addresses based on measurements from community monitors up to 12 months prior to testing. Single and multi-pollutant linear effects models were used to test the cumulative monthly lag effects of NO2, O3, and PM2.5 on morning serum cortisol levels after adjusting for age, sex, seasonality, social position, pubertal status, and body fat percent by DEXA. Results Single and multi-pollutant models showed that higher O3 exposure (derived from maximum 8-h exposure windows) in the prior 1–7 months was associated with higher serum morning cortisol (p < 0.05) and longer term PM2.5 exposure (4–10 months) was associated with lower serum morning cortisol levels (p < 0.05). Stratification by pubertal status showed associations in pre-pubertal children compared to pubertal and post-pubertal children. Single, but not multi-pollutant, models showed that higher NO2 over the 4–10 month exposure period associated with lower morning serum cortisol (p < 0.05). Conclusions Chronic ambient NO2, O3 and PM2.5 differentially associate with HPA-axis dysfunction, a mechanism that may serve as an explanatory pathway in the relationship between ambient air pollution and metabolic health of youth living in polluted urban environments. Further research that uncovers how ambient air pollutants may differentially contribute to HPA-axis dysfunction are warranted.


Sign in / Sign up

Export Citation Format

Share Document