scholarly journals Effect of ambient air pollutants and meteorological variables on COVID-19 incidence

2020 ◽  
Vol 41 (9) ◽  
pp. 1011-1015 ◽  
Author(s):  
Ying Jiang ◽  
Xiao-Jun Wu ◽  
Yan-Jun Guan

AbstractObjective:To determine whether ambient air pollutants and meteorological variables are associated with daily COVID-19 incidence.Design:A retrospective cohort from January 25 to February 29, 2020.Setting:Cities of Wuhan, Xiaogan, and Huanggang, China.Patients:The COVID-19 cases detected each day.Methods:We collected daily data of COVID-19 incidence, 8 ambient air pollutants (particulate matter of ≤2.5 µm [PM2.5], particulate matter ≤10 µm [PM10], sulfur dioxide [SO2], carbon monoxide [CO], nitrogen dioxide [NO2], and maximum 8-h moving average concentrations for ozone [O3-8h]) and 3 meteorological variables (temperature, relative humidity, and wind) in China’s 3 worst COVID-19–stricken cities during the study period. The multivariate Poisson regression was performed to understand their correlation.Results:Daily COVID-19 incidence was positively associated with PM2.5 and humidity in all cities. Specifically, the relative risk (RR) of PM2.5 for daily COVID-19 incidences were 1.036 (95% confidence interval [CI], 1.032–1.039) in Wuhan, 1.059 (95% CI, 1.046–1.072) in Xiaogan, and 1.144 (95% CI, 1.12–1.169) in Huanggang. The RR of humidity for daily COVID-19 incidence was consistently lower than that of PM2.5, and this difference ranged from 0.027 to 0.111. Moreover, PM10 and temperature also exhibited a notable correlation with daily COVID-19 incidence, but in a negative pattern The RR of PM10 for daily COVID-19 incidence ranged from 0.915 (95% CI, 0.896–0.934) to 0.961 (95% CI, 0.95–0.972, while that of temperature ranged from 0.738 (95% CI, 0.717–0.759) to 0.969 (95% CI, 0.966–0.973).Conclusions:Our data show that PM2.5 and humidity are substantially associated with an increased risk of COVID-19 and that PM10 and temperature are substantially associated with a decreased risk of COVID-19.

2021 ◽  
Vol 8 ◽  
Author(s):  
Wenming Shi ◽  
Meiyan Jiang ◽  
Lena Kan ◽  
Tiantian Zhang ◽  
Qiong Yu ◽  
...  

Objectives: Exposure to air pollutants has been linked to preterm birth (PTB) after natural conception. However, few studies have explored the effects of air pollution on PTB in patients who underwent in vitro fertilization (IVF). We aimed to investigate the association between ambient air pollutants exposure and PTB risk in IVF patients.Methods: This retrospective cohort study included 2,195 infertile women who underwent IVF treatment from January 2017 and September 2020 in Hangzhou Women's Hospital. Totally 1,005 subjects who underwent a first fresh embryo(s) transfer cycle were analyzed in this study. Residential exposure to ambient six air pollutants (PM2.5, PM10, SO2, NO2, CO, O3) during various periods of the IVF timeline were estimated by satellite remote-sensing and ground measurement. Cox proportional hazards models for discrete time were used to explore the association between pollutants exposure and incident PTB, with adjustment for confounders. Stratified analyses were employed to explore the effect modifiers.Results: The clinical pregnancy and PTB rates were 61.2 and 9.3%, respectively. We found that PM2.5 exposure was significantly associated with an increased risk of PTB during 85 days before oocyte retrieval [period A, adjusted hazard ratio, HR=1.09, 95%CI: 1.02–1.21], gonadotropin start to oocyte retrieval [period B, 1.07 (1.01–1.19)], first trimester of pregnancy [period F, 1.06 (1.01–1.14)], and the entire IVF pregnancy [period I, 1.07 (1.01–1.14)], respectively. An interquartile range increment in PM10 during periods A and B was significantly associated with PTB at 1.15 (1.04–1.36), 1.12 (1.03–1.28), and 1.14 (1.01–1.32) for NO2 during period A. The stratified analysis showed that the associations were stronger for women aged <35 years and those who underwent two embryos transferred.Conclusions: Our study suggests ambient PM2.5, PM10, and NO2 exposure were significantly associated with elevated PTB risk in IVF patients, especially at early stages of IVF cycle and during pregnancy.


2018 ◽  
Vol 41 (3) ◽  
pp. 494-501 ◽  
Author(s):  
Lingling Wang ◽  
Xiaomei Xiang ◽  
Baibing Mi ◽  
Hui Song ◽  
Min Dong ◽  
...  

Abstract Background The aim of this study was to investigate an association between birth defects and exposure to sulfur dioxide (SO2), nitrogen dioxide (NO2) and particles ≤10 μm in an aerodynamic diameter (PM10) during early pregnancy in Xi’an, China. Methods Birth defect data were from the Birth Defects Monitoring System of Xi’an, and data on ambient air pollutants during 2010–15 were from the Xi’an Environmental Protection Bureau. A generalized additive model (GAM) was used to investigate the relationship between birth defects and ambient air pollutants. Results Among the 8865 cases with birth defects analyzed, the overall incidence of birth defects was 117.33 per 10 000 infants. Ambient air pollutant exposure during the first trimester increased the risk of birth defects by 10.3% per 10 μg/m3 increment of NO2 and 3.4% per 10 μg/m3 increment of PM10. No significant association was found between birth defects and SO2. Moreover, NO2 increased risk of neural tube defects, congenital heart disease, congenital polydactyly, cleft palate, digestive system abnormalities and gastroschisis, and PM10 was associated with congenital heart disease and cleft lip with or without cleft palate. Conclusions Chinese women should avoid exposure to high levels of NO2 and PM10 during the first 3 months of pregnancy.


PLoS Medicine ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. e1003767
Author(s):  
Xiang Li ◽  
Mengying Wang ◽  
Yongze Song ◽  
Hao Ma ◽  
Tao Zhou ◽  
...  

Background Air pollution has been related to incidence of type 2 diabetes (T2D). We assessed the joint association of various air pollutants with the risk of T2D and examined potential modification by obesity status and genetic susceptibility on the relationship. Methods and findings A total of 449,006 participants from UK Biobank free of T2D at baseline were included. Of all the study population, 90.9% were white and 45.7% were male. The participants had a mean age of 56.6 (SD 8.1) years old and a mean body mass index (BMI) of 27.4 (SD 4.8) kg/m2. Ambient air pollutants, including particulate matter (PM) with diameters ≤2.5 μm (PM2.5), between 2.5 μm and 10 μm (PM2.5–10), nitrogen oxide (NO2), and nitric oxide (NO) were measured. An air pollution score was created to assess the joint exposure to the 4 air pollutants. During a median of 11 years follow-up, we documented 18,239 incident T2D cases. The air pollution score was significantly associated with a higher risk of T2D. Compared to the lowest quintile of air pollution score, the hazard ratio (HR) (95% confidence interval [CI]) for T2D was 1.05 (0.99 to 1.10, p = 0.11), 1.06 (1.00 to 1.11, p = 0.051), 1.09 (1.03 to 1.15, p = 0.002), and 1.12 (1.06 to 1.19, p < 0.001) for the second to fifth quintile, respectively, after adjustment for sociodemographic characteristics, lifestyle factors, genetic factors, and other covariates. In addition, we found a significant interaction between the air pollution score and obesity status on the risk of T2D (p-interaction < 0.001). The observed association was more pronounced among overweight and obese participants than in the normal-weight people. Genetic risk score (GRS) for T2D or obesity did not modify the relationship between air pollution and risk of T2D. Key study limitations include unavailable data on other potential T2D-related air pollutants and single-time measurement on air pollutants. Conclusions We found that various air pollutants PM2.5, PM2.5–10, NO2, and NO, individually or jointly, were associated with an increased risk of T2D in the population. The stratified analyses indicate that such associations were more strongly associated with T2D risk among those with higher adiposity.


2021 ◽  
Author(s):  
Sumit Aggarwal ◽  
Sivaraman Balaji ◽  
Tanvi Singh ◽  
Geetha R Menon ◽  
Sandeep Mandal ◽  
...  

Abstract Background: The Coronavirus disease 2019 (COVID-19) pandemic poses a serious public health concern worldwide. Certain regions of the globe were severely affected in terms of prevalence and mortality than other. Although the cause for this pattern is not clearly understood, lessons learned from previous epidemics and emerging evidences suggest the major role of ecological factors like ambient air pollutants (AAP) and meteorological parameters in increased COVID-19 incidence. The present study aimed to understand the impact of these factors on SARS-CoV-2 transmission and their associated mortality in major cities of India.Methods: This study used secondary AAP, meteorological and COVID-19 data from official websites for the period January-November 2020, which were divided into Pre-lockdown (January-March 2020), Phase I (April to June 2020) and Phase II (July to November 2020). After comprehensive screening, five major cities that includes 48 CPCB monitoring stations collecting daily data of ambient temperature, particulate matter PM2.5 and 10 were analysed. Spearman and Kendall’s rank correlation test was performed to understand the association between SARS-CoV-2 transmission and AAP and, meteorological variables. Similarly, case fatality rate (CFR) was determined to compute the correlation between AAP and COVID-19 related morality.Results: The level of air pollutants in major cities were significantly reduced during Phase I compared to Pre-lock down and increased upon Phase II in all the cities. During the Phase II in Delhi, the strong significant positive correlation was observed between the AAP and SARS-CoV-2 transmission. However, in Bengaluru, Hyderabad, Kolkata and Mumbai AAP levels were moderate and no correlation was noticed. The relation between AT and SARS-CoV-2 transmission was inconclusive as both positive and negative correlation observed. In addition, Delhi and Kolkata showed a positive association between long-term exposure to the AAP and COVID-19 CFR. Conclusion: Our findings support the hypothesis that the particulate matter upon exceeding the satisfactory level serves as an important cofactor in increasing the risk of SARS-CoV-2 transmission and related mortality. These findings would help public health experts to understand the SARS-CoV-2 transmission against ecological variables in India and provides supporting evidence to healthcare policymakers and government agencies for formulating strategies to combat the COVID-19.


2021 ◽  
Vol 22 (19) ◽  
pp. 10645
Author(s):  
Krystian Mokrzyński ◽  
Olga Krzysztyńska-Kuleta ◽  
Marcin Zawrotniak ◽  
Michał Sarna ◽  
Tadeusz Sarna

The human skin is exposed to various environmental factors including solar radiation and ambient air pollutants. Although, due to its physical and biological properties, the skin efficiently protects the body against the harm of environmental factors, their excessive levels and possible synergistic action may lead to harmful effects. Among particulate matter present in ambient air pollutants, PM2.5 is of particular importance for it can penetrate both disrupted and intact skin, causing adverse effects to skin tissue. Although certain components of PM2.5 can exhibit photochemical activity, only a limited amount of data regarding the interaction of PM2.5 with light and its effect on skin tissue are available. This study focused on light-induced toxicity in cultured human keratinocytes, which was mediated by PM2.5 obtained in different seasons. Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM) were employed to determine sizes of the particles. The ability of PM2.5 to photogenerate free radicals and singlet oxygen was studied using EPR spin-trapping and time-resolved singlet oxygen phosphorescence, respectively. Solar simulator with selected filters was used as light source for cell treatment to model environmental lightning conditions. Cytotoxicity of photoexcited PM2.5 was analyzed using MTT assay, PI staining and flow cytometry, and the apoptotic pathway was further examined using Caspase-3/7 assay and RT-PCR. Iodometric assay and JC-10 assay were used to investigate damage to cell lipids and mitochondria. Light-excited PM2.5 were found to generate free radicals and singlet oxygen in season-dependent manner. HaCaT cells containing PM2.5 and irradiated with UV-Vis exhibited oxidative stress features–increased peroxidation of intracellular lipids, decrease of mitochondrial membrane potential, enhanced expression of oxidative stress related genes and apoptotic cell death. The data indicate that sunlight can significantly increase PM2.5-mediated toxicity in skin cells.


Author(s):  
Hao-Wei Chung ◽  
Chih-Hsing Hung ◽  
Fu-Chen Kuo ◽  
Hui-Min Hsieh ◽  
Chung-Hsiang Li ◽  
...  

Background: Both air pollutants and neonatal jaundice (NJ) have known effects on childhood asthma, but higher total serum bilirubin (TSB) level was associated with lung protection. This study aimed to assess whether prenatal/postnatal exposure to air ambient pollutants is related to the inception of asthma in NJ infants. Material and methods: A nested case-control retrospective study of NJ infants was performed on the Kaohsiung Medical University Hospital Research Database between 2009 and 2019. The average concentration of particulate matter (PM2.5), sulfur dioxide (SO2), nitric dioxide (NO2) for six months, first and second years after the birth, and first, second and third trimesters prenatally were analyzed. The mild and significant NJ infants were categorized as TSB level < and ≧12 mg/dl, respectively. Asthma was defined as a diagnosis with medication. The adjusted odds ratio (aOR) and 95% confidence interval (CI) present the relationship between study periods and childhood asthma. Results: SO2 and NO2 exposure during prenatal periods were significantly associated with increased risk of childhood asthma in mild NJ infants (aOR (95% CI)), SO2: 1.20-1.34 (1.05-1.56); NO2: 1.06-1.07 (1.01-1.13)). Effects were more pronounced in postnatal exposure to three ambient air pollutants in mild jaundice infants. (aOR (95% CI), SO2: 1.33-1.41 (1.14-1.69); NO2: 1.07-1.31 (1.01-1.49; PM2.5:1.05 (1.00-1.10) Conclusion: Both SO2 and NO2 during prenatal and postnatal exposure in mild NJ infants were associated with childhood asthma. Whether taken phototherapy or not, significant NJ infants were spared by three ambient air pollutants.


Author(s):  
Radhika M. Patil ◽  
Dr. H. T. Dinde ◽  
Sonali. K. Powar

Day by day the air pollution becomes serious concern in India as well as in overall world. Proper or accurate prediction or forecast of Air Quality or the concentration level of other Ambient air pollutants such as Sulfur Dioxide, Nitrogen Dioxide, Carbon Monoxide, Particulate Matter having diameter less than 10µ, Particulate Matter having diameter less than 2.5µ, Ozone, etc. is very important because impact of these factors on human health becomes severe. This literature review focuses on the various techniques used for prediction or modelling of Air Quality Index (AQI) and forecasting of future concentration levels of pollutants that may cause the air pollution so that governing bodies can take the actions to reduce the pollution.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Sumit Aggarwal ◽  
Sivaraman Balaji ◽  
Tanvi Singh ◽  
Geetha R. Menon ◽  
Sandip Mandal ◽  
...  

Abstract Background The Coronavirus disease 2019 (COVID-19) pandemic poses a serious public health concern worldwide. Certain regions of the globe were severely affected in terms of prevalence and mortality than other. Although the cause for this pattern is not clearly understood, lessons learned from previous epidemics and emerging evidences suggest the major role of ecological factors like ambient air pollutants (AAP) and meteorological parameters in increased COVID-19 incidence. The present study aimed to understand the impact of these factors on SARS-CoV-2 transmission and their associated mortality in major cities of India. Methods This study used secondary AAP, meteorological and COVID-19 data from official websites for the period January-November 2020, which were divided into Pre-lockdown (January-March 2020), Phase I (April to June 2020) and Phase II (July to November 2020) in India. After comprehensive screening, five major cities that includes 48 CPCB monitoring stations collecting daily data of ambient temperature, particulate matter PM2.5 and 10 were analysed. Spearman and Kendall’s rank correlation test was performed to understand the association between SARS-CoV-2 transmission and AAP and, meteorological variables. Similarly, case fatality rate (CFR) was determined to compute the correlation between AAP and COVID-19 related morality. Results The level of air pollutants in major cities were significantly reduced during Phase I compared to Pre-lock down and increased upon Phase II in all the cities. During the Phase II in Delhi, the strong significant positive correlation was observed between the AAP and SARS-CoV-2 transmission. However, in Bengaluru, Hyderabad, Kolkata and Mumbai AAP levels were moderate and no correlation was noticed. The relation between AT and SARS-CoV-2 transmission was inconclusive as both positive and negative correlation observed. In addition, Delhi and Kolkata showed a positive association between long-term exposure to the AAP and COVID-19 CFR. Conclusion Our findings support the hypothesis that the particulate matter upon exceeding the satisfactory level serves as an important cofactor in increasing the risk of SARS-CoV-2 transmission and related mortality. These findings would help public health experts to understand the SARS-CoV-2 transmission against ecological variables in India and provides supporting evidence to healthcare policymakers and government agencies for formulating strategies to combat the COVID-19.


Sign in / Sign up

Export Citation Format

Share Document