scholarly journals Prevalence and Genetic Characterizations of Enterocytozoon Bieneusi in Captive Red Pandas (Ailurus Fulgens) In Sichuan Province, Southwestern China

Author(s):  
Yang-yang Zeng ◽  
Wan-Yu Meng ◽  
Song-Rui Liu ◽  
Jin-Chuan Yao ◽  
Ming He ◽  
...  

Abstract Background: Enterocytozoon bieneusi (E. bieneusi) can infect a broad range of animals, and also the major pathogen for human microsporidiosis. The risk of zoonosis is uncertain because of limited research on red pandas. In addition, the semi-free range breeding enables the red panda direct contact with tourists. It is essential to investigate the prevalence and genotypes and to evaluate the safety of this breeding mode. Methods: Based on nested PCR, 198 fecal specimens were sampled from 6 zoos in Sichuan province from July 2020 to December 2020, to identify positive samples by amplifying the internal transcribed spacer (ITS) region of ribosomal RNA with specific primers. The correlation analysis of infection rate was carried out between different breeding modes (captive and semi-free-range). To cluster the identified genotypes with related genotypes to deduce zoonotically potential by phylogenetic analysis. In addition, Multilocus genotypes (MLGs) in ITS-positive samples were performed using the Multilocus Sequence Typing (MLST) tool.Results: The Polymerase Chain Reaction (PCR) results showed that 12.1% (24/198) samples were positive for E.bieneusi. The infection rates varied from 0% to 18.0% in different zoos and were significantly different in different breeding methods (χ2=5.442, P=0.0197). Genotypes D, SC02, and SCR1(novel) were clustered in zoonotic group 1, while genotype PL2 is clustered in group 2-like with uncertain risk by phylogenetic analysis. Furthermore, 3 distinct multilocus genotyping were formed in ITS-positive isolates.Conclusions: These results revealed the circulating of E. bieneusi in zoo red pandas, indicating that red pandas may be a source of human microsporidiosis and that semi-free range breeding mode as a risk factor increased the E. bieneusi infection rate and potential cross-species transmission.

Parasite ◽  
2019 ◽  
Vol 26 ◽  
pp. 62 ◽  
Author(s):  
Huan-Huan Zhou ◽  
Xin-Li Zheng ◽  
Tian-Ming Ma ◽  
Meng Qi ◽  
Zong-Xi Cao ◽  
...  

Enterocytozoon bieneusi is an important pathogen commonly found in humans and animals. Farmed animals with close contact to humans are important hosts of E. bieneusi. The role of goats in the transmission of E. bieneusi, however, remains unclear. In this study, 341 fresh fecal samples of black goats were collected from five locations in Hainan Province, China. Enterocytozoon bieneusi was identified and genotyped by sequences of the internal transcribed spacer (ITS) region. Phylogenetic analysis was performed by constructing a neighbor-joining tree of the ITS gene sequences. The average prevalence of E. bieneusi in black goats was 24.0% (82/341) with rates ranging from 6.3% (4/63) to 37.2% (32/86) across the locations (χ2 = 17.252, p < 0.01). Eight genotypes of E. bieneusi were identified, including six known genotypes: CHG5 (n = 47); CHG3 (n = 23); CHG2 (n = 4); CM21 (n = 3); D (n = 2); and AHG1 (n = 1), and two novel genotypes termed HNG-I (n = 1) and HNG-II (n = 1). In the phylogenetic tree, genotype D was clustered into Group 1 and the other identified genotypes were included in Group 2. This represents the first report identifying E. bieneusi in black goats from Hainan Province, with a high prevalence and wide occurrence demonstrated. The two new genotypes identified provide additional insights into the genotypic variations in E. bieneusi. Due to the small percentage of zoonotic genotypes in these animals, there is minimal risk of zoonotic transmission of E. bieneusi.


2020 ◽  
Author(s):  
Fuchang Yu ◽  
Yangwenna Cao ◽  
Haiyan Wang ◽  
Qiang Liu ◽  
Aiyun Zhao ◽  
...  

Abstract Background: Enterocytozoon bieneusi is a zoonotic gastrointestinal pathogen and can infect both humans and animals. The coypu (Myocastor coypus) is a semi-aquatic rodent, in which few E. bieneusi infections have been reported and the distribution of genotypes and zoonotic potential remains unknown.Methods: A total of 308 fresh fecal samples were collected from seven coypu farms in China to determine the infection rate and the distribution of genotypes of E. bieneusi from coypus using nested-PCR amplification of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene.Results: Enterocytozoon bieneusi was detected with an infection rate of 41.2% (n = 127). Four genotypes were identified, including three known genotypes (CHN4 (n = 111), EbpC (n = 8) and EbpA (n = 7)) and a novel genotype named CNCP1 (n = 1). Conclusions: The rare genotype CHN4 was the most common genotype in the present study, and the transmission dynamics of E. bieneusi in coypus were different from other rodents. To the best of our knowledge, this is the first report of E. bieneusi infections in coypus in China. Our study reveals that E. bieneusi in coypus may be a potential infection source to humans.


Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1674-1682 ◽  
Author(s):  
Jason C. Hong ◽  
M. Timur Momol ◽  
Jeffrey B. Jones ◽  
Pingsheng Ji ◽  
Stephen M. Olson ◽  
...  

The discovery of exotic Ralstonia solanacearum biovar 1 strains on geranium in north Florida led to a concern that this strain may have become established. Therefore, we monitored irrigation ponds and potential alternative aquatic weeds from 2002 to 2005 for the presence of this strain. We report that this strain, possibly originating from the Caribbean, has become established in several ponds in Gadsden County, FL. Cladistic taxonomy was used to subclassify the bacterium at the species level into four groups or phylotypes based on multiplex polymerase chain reaction of the internal transcribed spacer (ITS) region. The bacterium was further divided into sequevars by sequencing the endoglucanase gene (egl). The strains were determined to belong to phylotype II/sequevar 4 NPB (nonpathogenic on banana) that was recently reported in Martinique. Partial sequencing of the egl followed by phylogenetic analysis placed the new Caribbean strains in a different clade than the typical Florida endemic strains. Pulsed-field gel electrophoresis (PFGE) revealed different haplotypes upon comparison of the collected pond strains and the Floridian strains. Based on PFGE polymorphism, egl sequencing, and phylogenetic analysis, the Caribbean strains were shown to be identical to the strain isolated from infected geranium plants. Experiments were undertaken to monitor R. solanacearum in irrigation ponds and associated weeds. R. solanacearum was detected in surface-disinfested common aquatic weeds growing in the irrigation ponds, including Hydrocotyle ranunculoides (dollar weed) and Polygonum pennsylvanicum (Pennsylvania smart weed). Both weeds were latently infected and showed no signs of wilt when collected. Two different Hydrocotyle spp. were artificially inoculated with R. solanacearum under greenhouse conditions and both developed symptoms 14 days post inoculation (dpi) and the bacterium was recovered from the tissues 42 dpi. There was a positive correlation between ambient temperature and R. solanacearum populations in irrigation water, as previously shown by other researchers.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 128
Author(s):  
Manman Zang ◽  
Jinjin Li ◽  
Chun Tang ◽  
Songtao Ding ◽  
Wei Huang ◽  
...  

Enterocytozoon bieneusi can cause severe diarrhea in children and adults. However, in China, there are scant studies on E. bieneusi in diarrheal children and adults, with the exception of prevalence and genotyping data in a small number of cities including Hubei, Shanghai, and Heilongjiang. In this study, 196 fecal samples (n = 132 in Chongqing, n = 44 in Shandong, n = 20 in Hubei) were collected, including 91 from children and 105 from adults. Through microscopic examination, 19 positive samples (11 from children and 8 from adults) were detected. Using PCR examination, the internal transcriptional spacer (ITS) region was utilized by nested PCR to detect and characterize E. bieneusi. Twenty positive samples were detected, including 14 from children (≤11 years of age) and 6 from adults. According to the sequence analysis of ITS data, one known zoonotic (D) and seven novel (CQH5-11) genotypes were identified. This is the first molecular epidemiological study of E. bieneusi in diarrheal patients in different regions of China. Therefore, this study can provide useful information for the molecular epidemiology and control of E. bieneusi infection in humans in the future.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Zhao ◽  
Guang-Xu Ren ◽  
Yu Qiang ◽  
Jiaqi Li ◽  
Jinkang Pu ◽  
...  

Enterocytozoon bieneusi is a microsporidian and zoonotic species. This study investigated the prevalence and distribution of E. bieneusi genotypes in farmed masked palm civets using nested PCR, as well as assessed their zoonotic potential by phylogenetic analysis of the ITS region of the rRNA region. Here, we collected 251 fecal specimens from farmed masked palm civets (Paguma larvata) from the Hainan Island, China. In total, 128 of 251 samples were positive for E. bieneusi, with an average infection rate of 51.0%. Seventeen genotypes were identified including 12 known genotypes—HNR-VI (n = 56), SHR1 (n = 45), SHW7 (n = 6), KIN-1 (n = 3), D (n = 3), New1 (n = 3), EbpC (n = 2), CHC5 (n = 1), CHG19 (n = 1), CHN4 (n = 1), EbpA (n = 1), and Henan-III (n = 1)—and five novel genotypes (HNPL-I to HNPL-II; one each). Phylogenetic analysis categorized these genotypes into two groups. Thirteen of them were members of the zoonotic group 1, and the remaining four genotypes were in group 12. This study has shown that the infection rates of E. bieneusi in masked palm civets from Hainan were relatively high and provide baseline data to control and prevent microsporidiosis in farm-related communities. Therefore, infections in masked palm civets with zoonotic genotypes D, EbpC, CHN4, EbpA, KIN-1, and Henan-III should be considered potential threats to public health.


2020 ◽  
Author(s):  
Didem Pekmezci ◽  
Gamze Yetismis ◽  
Cagatay Esin ◽  
Onder Duzlu ◽  
Zeynep Nurselin Colak ◽  
...  

Abstract Encephalitozoon spp. and Enterocytozoon bieneusi are well-known microsporidian pathogens, recently classified as fungi, infecting humans and reptiles, mammals, and birds. Budgerigars (Melopsittacus undulates) are the most preferred captive pet birds in the households. Prevalence and molecular data on microsporidian species in budgerigars are scarce worldwide. The aim of the present study was to investigate the occurrence and genotypes of Encephalitozoon spp. and E. bieneusi in budgerigars, and to reveal their zoonotic potential. A total of 143 fecal samples were collected from owned healthy budgerigars in Turkey. Encephalitozoon spp. and E. bieneusi were examined by nested PCR targeting the ribosomal internal transcribed spacer (ITS) region and sequenced for identifying Encephalitozoon spp. and E. bieneusi. The overall prevalence of E. hellem and E. bieneusi was 14.7% (21/143) and 3.5% (5/143), respectively. Two genotypes of E. hellem were identified, including one known 1A (n = 18) and a novel TURK1B (n = 3). In addition, we determined two E. bieneusi genotypes, including one known N (n = 2) and a novel TURKM1 (n = 3). E. hellem 1A and novel TURK1B clustered as a sister taxon, and genotype N and novel TURKM1 genotypes fall into group 2 of E. bieneusi in the phylogenetic tree. Novel genotypes of E. hellem and E. bieneusi were described for the first time in the avian host. Moreover, E. bieneusi genotype N was first detected in avian hosts in the present study. This study contributes to the current knowledge on the molecular epidemiology and transmission dynamics of E. hellem and E. bieneusi. Lay Summary Spore producing microsporidia are ubiquitous, obligate, and intracellular fungus defined as emerging opportunistic pathogens of humans, livestock, companion animals, wild mammals, birds, and water worldwide. The occurrence of microsporidia in animals could be risky for human public health.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Fuchang Yu ◽  
Yangwenna Cao ◽  
Haiyan Wang ◽  
Qiang Liu ◽  
Aiyun Zhao ◽  
...  

Abstract Background Enterocytozoon bieneusi is a zoonotic gastrointestinal pathogen and can infect both humans and animals. The coypu (Myocastor coypus) is a semi-aquatic rodent, in which few E. bieneusi infections have been reported and the distribution of genotypes and zoonotic potential remains unknown. Methods A total of 308 fresh fecal samples were collected from seven coypu farms in China to determine the infection rate and the distribution of genotypes of E. bieneusi from coypus using nested-PCR amplification of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene. Results Enterocytozoon bieneusi was detected with an infection rate of 41.2% (n = 127). Four genotypes were identified, including three known genotypes (CHN4 (n = 111), EbpC (n = 8) and EbpA (n = 7)) and a novel genotype named CNCP1 (n = 1). Conclusions The rare genotype CHN4 was the most common genotype in the present study, and the transmission dynamics of E. bieneusi in coypus were different from other rodents. To the best of our knowledge, this is the first report of E. bieneusi infections in coypus in China. Our study reveals that E. bieneusi in coypus may be a potential infection source to humans.


2020 ◽  
Author(s):  
Fuchang Yu ◽  
Yangwenna Cao ◽  
Haiyan Wang ◽  
Qiang Liu ◽  
Aiyun Zhao ◽  
...  

Abstract Background: Enterocytozoon bieneusi is a zoonotic gastrointestinal pathogen and can infect both humans and animals. Coypus (Myocastor coypus) are semi-aquatic rodents, in which few E. bieneusi infections have been reported and the distribution of genotypes and zoonotic potential remains unknown.Methods: A total of 308 fresh fecal samples were collected from seven coypu farms in China to determine the infection rate and the distribution of genotypes of E. bieneusi from coypus using nested-PCR amplification of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene.Results: E. bieneusi was detected with an infection rate of 41.2% (n = 127). Four genotypes were identified, including three known genotypes: CHN4 (n = 111), EbpC (n = 8) and EbpA (n = 7) and a novel genotype named CNCP1 (n = 1). Conclusions: The rare genotype CHN4 was the most common one in the present study, and the transmission dynamics of E. bieneusi in coypus were different from other rodents. This is the first report of E. bieneusi infections in coypus in China. Our study reveals that E. bieneusi in coypus may be potential infection source to humans.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1149
Author(s):  
Dina M. Metwally ◽  
Isra M. Al-Turaiki ◽  
Najwa Altwaijry ◽  
Samia Q. Alghamdi ◽  
Abdullah D. Alanazi

We analyzed the blood from 400 one-humped camels, Camelus dromedarius (C. dromedarius), in Riyadh and Al-Qassim, Saudi Arabia to determine if they were infected with the parasite Trypanosoma spp. Polymerase chain reaction (PCR) targeting the internal transcribed spacer 1 (ITS1) gene was used to detect the prevalence of Trypanosoma spp. in the camels. Trypanosoma evansi (T. evansi) was detected in 79 of 200 camels in Riyadh, an infection rate of 39.5%, and in 92 of 200 camels in Al-Qassim, an infection rate of 46%. Sequence and phylogenetic analyses revealed that the isolated T. evansi was closely related to the T. evansi that was detected in C. dromedarius in Egypt and the T. evansi strain B15.1 18S ribosomal RNA gene identified from buffalo in Thailand. A BLAST search revealed that the sequences are also similar to those of T. evansi from beef cattle in Thailand and to T. brucei B8/18 18S ribosomal RNA from pigs in Nigeria.


Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 973-973 ◽  
Author(s):  
N. A. Al-Saady ◽  
A. M. Al-Subhi ◽  
A. Al-Nabhani ◽  
A. J. Khan

Chickpea (Cicer arietinum), locally known as “Dungo”, is grown for legume and animal feed mainly in the interior region of Oman. During February 2006, survey samples of chickpea leaves from plants showing yellows disease symptoms that included phyllody and little leaf were collected from the Nizwa Region (175 km south of Muscat). Total nucleic acid was extracted from asymptomatic and symptomatic chickpea leaves using a cetyltrimethylammoniumbromide method with modifications (3). All leaf samples from eight symptomatic plants consistently tested positive using a polymerase chain reaction assay (PCR) with phytoplasma universal primers (P1/P7) that amplify a 1.8-kb phytoplasma rDNA product and followed by nested PCR with R16F2n/R16R2 primers yielding a product of 1.2 kb (2). No PCR products were evident when DNA extracted from healthy plants was used as template. Restriction fragment length polymorphism analysis of nested PCR products by separate digestion with Tru9I, HaeIII, HpaII, AluI, TaqI, HhaI, and RsaI restriction enzymes revealed that a phytoplasma belonging to group 16SrII peanut witches'-broom group (2) was associated with chickpea phyllody and little leaf disease in Oman. Restriction profiles of chickpea phytoplasma were identical with those of alfalfa witches'-broom phytoplasma, a known subgroup 16SrII-B strain (3). To our knowledge, this is the first report of phytoplasma infecting chickpea crops in Oman. References: (1) A. J. Khan et al. Phytopathology, 92:1038, 2002. (2). I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998 (3) M. A. Saghai-Maroof et al. Proc. Natl. Acad. Sci. USA. 81:8014, 1984.


Sign in / Sign up

Export Citation Format

Share Document