Occurrence and molecular identification of zoonotic microsporidia in pet budgerigars (Melopsittacus undulatus) in Turkey

2020 ◽  
Author(s):  
Didem Pekmezci ◽  
Gamze Yetismis ◽  
Cagatay Esin ◽  
Onder Duzlu ◽  
Zeynep Nurselin Colak ◽  
...  

Abstract Encephalitozoon spp. and Enterocytozoon bieneusi are well-known microsporidian pathogens, recently classified as fungi, infecting humans and reptiles, mammals, and birds. Budgerigars (Melopsittacus undulates) are the most preferred captive pet birds in the households. Prevalence and molecular data on microsporidian species in budgerigars are scarce worldwide. The aim of the present study was to investigate the occurrence and genotypes of Encephalitozoon spp. and E. bieneusi in budgerigars, and to reveal their zoonotic potential. A total of 143 fecal samples were collected from owned healthy budgerigars in Turkey. Encephalitozoon spp. and E. bieneusi were examined by nested PCR targeting the ribosomal internal transcribed spacer (ITS) region and sequenced for identifying Encephalitozoon spp. and E. bieneusi. The overall prevalence of E. hellem and E. bieneusi was 14.7% (21/143) and 3.5% (5/143), respectively. Two genotypes of E. hellem were identified, including one known 1A (n = 18) and a novel TURK1B (n = 3). In addition, we determined two E. bieneusi genotypes, including one known N (n = 2) and a novel TURKM1 (n = 3). E. hellem 1A and novel TURK1B clustered as a sister taxon, and genotype N and novel TURKM1 genotypes fall into group 2 of E. bieneusi in the phylogenetic tree. Novel genotypes of E. hellem and E. bieneusi were described for the first time in the avian host. Moreover, E. bieneusi genotype N was first detected in avian hosts in the present study. This study contributes to the current knowledge on the molecular epidemiology and transmission dynamics of E. hellem and E. bieneusi. Lay Summary Spore producing microsporidia are ubiquitous, obligate, and intracellular fungus defined as emerging opportunistic pathogens of humans, livestock, companion animals, wild mammals, birds, and water worldwide. The occurrence of microsporidia in animals could be risky for human public health.

Parasite ◽  
2019 ◽  
Vol 26 ◽  
pp. 62 ◽  
Author(s):  
Huan-Huan Zhou ◽  
Xin-Li Zheng ◽  
Tian-Ming Ma ◽  
Meng Qi ◽  
Zong-Xi Cao ◽  
...  

Enterocytozoon bieneusi is an important pathogen commonly found in humans and animals. Farmed animals with close contact to humans are important hosts of E. bieneusi. The role of goats in the transmission of E. bieneusi, however, remains unclear. In this study, 341 fresh fecal samples of black goats were collected from five locations in Hainan Province, China. Enterocytozoon bieneusi was identified and genotyped by sequences of the internal transcribed spacer (ITS) region. Phylogenetic analysis was performed by constructing a neighbor-joining tree of the ITS gene sequences. The average prevalence of E. bieneusi in black goats was 24.0% (82/341) with rates ranging from 6.3% (4/63) to 37.2% (32/86) across the locations (χ2 = 17.252, p < 0.01). Eight genotypes of E. bieneusi were identified, including six known genotypes: CHG5 (n = 47); CHG3 (n = 23); CHG2 (n = 4); CM21 (n = 3); D (n = 2); and AHG1 (n = 1), and two novel genotypes termed HNG-I (n = 1) and HNG-II (n = 1). In the phylogenetic tree, genotype D was clustered into Group 1 and the other identified genotypes were included in Group 2. This represents the first report identifying E. bieneusi in black goats from Hainan Province, with a high prevalence and wide occurrence demonstrated. The two new genotypes identified provide additional insights into the genotypic variations in E. bieneusi. Due to the small percentage of zoonotic genotypes in these animals, there is minimal risk of zoonotic transmission of E. bieneusi.


Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 131
Author(s):  
Daniel Martin ◽  
Maria Teresa Aguado ◽  
María-Ana Fernández Álamo ◽  
Temir Alanovich Britayev ◽  
Markus Böggemann ◽  
...  

Phyllodocida is a clade of errantiate annelids characterized by having ventral sensory palps, anterior enlarged cirri, axial muscular proboscis, compound chaetae (if present) with a single ligament, and of lacking dorsolateral folds. Members of most families date back to the Carboniferous, although the earliest fossil was dated from the Devonian. Phyllodocida holds 27 well-established and morphologically homogenous clades ranked as families, gathering more than 4600 currently accepted nominal species. Among them, Syllidae and Polynoidae are the most specious polychaete groups. Species of Phyllodocida are mainly found in the marine benthos, although a few inhabit freshwater, terrestrial and planktonic environments, and occur from intertidal to deep waters in all oceans. In this review, we (1) explore the current knowledge on species diversity trends (based on traditional species concept and molecular data), phylogeny, ecology, and geographic distribution for the whole group, (2) try to identify the main knowledge gaps, and (3) focus on selected families: Alciopidae, Goniadidae, Glyceridae, Iospilidae, Lopadorrhynchidae, Polynoidae, Pontodoridae, Nephtyidae, Sphaerodoridae, Syllidae, Tomopteridae, Typhloscolecidae, and Yndolaciidae. The highest species richness is concentrated in European, North American, and Australian continental shelves (reflecting a strong sampling bias). While most data come from shallow coastal and surface environments most world oceans are clearly under-studied. The overall trends indicate that new descriptions are constantly added through time and that less than 10% of the known species have molecular barcode information available.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3571
Author(s):  
Hua Liu ◽  
Jie Xu ◽  
Yujuan Shen ◽  
Jianping Cao ◽  
Jianhai Yin

Microsporidia are considered to be highly diverged and specialized parasites, and can infect a wide variety of vertebrate and invertebrate hosts. Enterocytozoon bieneusi is the most prevalent species in humans and various livestock, wildlife, and companion mammals. Dogs being the most popular companion animals of humans become more and more regarded. In this study, 272 fecal specimens were collected from stray dogs from Shanghai, but the dogs were adopted in a shelter in Zhenjiang, Jiangsu Province, China. E. bieneusi was examined by PCR amplification of the internal transcribed spacer (ITS) region and sequence analysis. The total positive rate of E. bieneusi was 8.8% (24/272). Moreover, 8 genotypes were found, including three known (genotypes EbpA, Henan V and Type IV) and 5 novel genotypes (genotypes SHZJD1–5). Two samples were positive for two genotypes, one was positive fortype SHZJD4 and Henan V, the other was positive for Henan V and Type IV. In addition, phylogenetic analysis showed all genotypes obtained in this study were all clustered into the zoonotic group 1. Therefore, the risk of zoonotic transmission of pathogens such as E. bieneusi from stray dogs to humans potentially threaten human health, and it is time to strengthen their health management.


2021 ◽  
Author(s):  
Yang-yang Zeng ◽  
Wan-Yu Meng ◽  
Song-Rui Liu ◽  
Jin-Chuan Yao ◽  
Ming He ◽  
...  

Abstract Background: Enterocytozoon bieneusi (E. bieneusi) can infect a broad range of animals, and also the major pathogen for human microsporidiosis. The risk of zoonosis is uncertain because of limited research on red pandas. In addition, the semi-free range breeding enables the red panda direct contact with tourists. It is essential to investigate the prevalence and genotypes and to evaluate the safety of this breeding mode. Methods: Based on nested PCR, 198 fecal specimens were sampled from 6 zoos in Sichuan province from July 2020 to December 2020, to identify positive samples by amplifying the internal transcribed spacer (ITS) region of ribosomal RNA with specific primers. The correlation analysis of infection rate was carried out between different breeding modes (captive and semi-free-range). To cluster the identified genotypes with related genotypes to deduce zoonotically potential by phylogenetic analysis. In addition, Multilocus genotypes (MLGs) in ITS-positive samples were performed using the Multilocus Sequence Typing (MLST) tool.Results: The Polymerase Chain Reaction (PCR) results showed that 12.1% (24/198) samples were positive for E.bieneusi. The infection rates varied from 0% to 18.0% in different zoos and were significantly different in different breeding methods (χ2=5.442, P=0.0197). Genotypes D, SC02, and SCR1(novel) were clustered in zoonotic group 1, while genotype PL2 is clustered in group 2-like with uncertain risk by phylogenetic analysis. Furthermore, 3 distinct multilocus genotyping were formed in ITS-positive isolates.Conclusions: These results revealed the circulating of E. bieneusi in zoo red pandas, indicating that red pandas may be a source of human microsporidiosis and that semi-free range breeding mode as a risk factor increased the E. bieneusi infection rate and potential cross-species transmission.


2007 ◽  
Vol 57 (2) ◽  
pp. 414-418 ◽  
Author(s):  
Puja Saluja ◽  
G. S. Prasad

Two novel anamorphic yeast strains (S-15LT and 3-C1) were isolated from the inflorescences of plants collected in two different towns in Rajasthan State, India. Sequencing of the D1/D2 domains of the large-subunit (LSU) rDNA and the internal transcribed spacer (ITS) regions suggested they are strains of the same species. Phenotypic characteristics such as the absence of fermentation, the absence of sexual structures and ballistoconidia, the assimilation of myo-inositol and d-glucuronate, and positive Diazonium blue B and urease reactions indicated that these strains belong to the genus Cryptococcus. The novel strains differed from Cryptococcus laurentii in six physiological tests and differed from other related species in more than six tests. A phylogenetic analysis of the sequences of the D1/D2 domains of the LSU rDNA and the ITS regions placed these strains in the Bulleromyces clade within the order Tremellales, with C. laurentii as their closest described relative. The novel strains showed 1.6 and 7.5 % divergence in the D1/D2 domain of the LSU rDNA and ITS regions, respectively, with respect to C. laurentii. The divergence from other species was more than 3 % for the D1/D2 domain and more than 9 % for the ITS region. On the basis of the phenotypic and molecular data, strains S-15LT and 3-C1 represent a novel species within the genus Cryptococcus, for which the name Cryptococcus rajasthanensis sp. nov. is proposed. The type strain is S-15LT (=MTCC 7075T=CBS 10406T).


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 420
Author(s):  
María Eugenia Salgado Salomón ◽  
Carolina Barroetaveña ◽  
Tuula Niskanen ◽  
Kare Liimatainen ◽  
Matthew E. Smith ◽  
...  

This paper is a contribution to the current knowledge of taxonomy, ecology and distribution of South American Cortinarius (Pers.) Gray. Cortinarius is among the most widely distributed and species-rich basidiomycete genera occurring with South American Nothofagaceae and species are found in many distinct habitats, including shrublands and forests. Due to their ectomycorrhizal role, Cortinarius species are critical for nutrient cycling in forests, especially at higher latitudes. Some species have also been reported as edible fungi with high nutritional quality. Our aim is to unravel the taxonomy of selected Cortinarius belonging to phlegmacioid and myxotelamonioid species based on morphological and molecular data. After widely sampling Cortinarius specimens in Patagonian Nothofagaceae forests and comparing them to reference collections (including holotypes), we propose five new species of Cortinarius in this work. Phylogenetic analyses of concatenated rDNA ITS-LSU and RPB1 sequences failed to place these new species into known Cortinarius sections or lineages. These findings highlight our knowledge gaps regarding the fungal diversity of South American Nothofagaceae forests. Due to the high diversity of endemic Patagonian taxa, it is clear that the South American Cortinarius diversity needs to be discovered and described in order to understand the evolutionary history of Cortinarius on a global scale.


2002 ◽  
Vol 15 (1) ◽  
pp. 49 ◽  
Author(s):  
Dorothy A. Steane ◽  
Dean Nicolle ◽  
Gay E. McKinnon ◽  
René E. Vaillancourt ◽  
Brad M. Potts

This expanded survey of ITS sequences represents the largest analysis of molecular data ever attempted on Eucalyptus. Sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA were included in an analysis of 90 species of Eucalyptus s.s. and 28 species representing eight other genera (Allosyncarpia, Angophora, Arillastrum, Corymbia, Eucalyptopsis, Stockwellia, Lophostemon and Metrosideros). The results of the study indicate that Angophora and Corymbia form a well-supported clade that is highly differentiated from Eucalyptus s.s. Corymbia species are divided between two clades, one of which may be the sister to Angophora. Allosyncarpia, Arillastrum, Eucalyptopsis and ‘Stockwellia’ are also highly differentiated from Eucalyptus s.s. If the genus Eucalyptus is to be expanded to include Angophora and Corymbia(sensu Brooker 2000), ITS data suggest that Allosyncarpia, Eucalyptopsis, ‘Stockwellia’ and potentially Arillastrum should also be included in Eucalyptus s.l. The ITS data suggest that subg. Symphyomyrtus is paraphyletic and that subg. Minutifructus should be included within it. Within subg.Symphyomyrtus, only sect. Maidenaria appears to be monophyletic. Sections Adnataria and Dumaria are probably monophyletic; sections Exsertaria and Latoangulatae are very close and probably should be combined in a single section. Section Bisectae is polyphyletic and is divided into two distinct lineages. The phylogenetic groups depicted by ITS data are consistent with the frequency of natural inter-specific hybridisations as well as data from controlled crosses within subgenus Symphyomyrtus. The ITS data illustrate that subg. Idiogenes and western Australian monocalypts are early evolutionary lines relative to E. diversifolia, E. rubiginosa (monotypic subg. Primitiva) and the eastern monocalypts and that subg. Primitiva should be sunk into subg. Eucalyptus. Subgenus Eudesmia may be monophyletic, grouping with subgenera Idiogenes and Eucalyptus. Further work is required to confirm the phylogenetic positions of the monotypic subgenera Alveolata, Cruciformes, Acerosae and Cuboidea.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mercia Rasoanoro ◽  
Steven M. Goodman ◽  
Milijaona Randrianarivelojosia ◽  
Mbola Rakotondratsimba ◽  
Koussay Dellagi ◽  
...  

Abstract Background Numerous studies have been undertaken to advance knowledge of apicomplexan parasites infecting vertebrates, including humans. Of these parasites, the genus Plasmodium has been most extensively studied because of the socio-economic and public health impacts of malaria. In non-human vertebrates, studies on malaria or malaria-like parasite groups have been conducted but information is far from complete. In Madagascar, recent studies on bat blood parasites indicate that three chiropteran families (Miniopteridae, Rhinonycteridae, and Vespertilionidae) are infected by the genus Polychromophilus with pronounced host specificity: Miniopterus spp. (Miniopteridae) harbour Polychromophilus melanipherus and Myotis goudoti (Vespertilionidae) is infected by Polychromophilus murinus. However, most of the individuals analysed in previous studies were sampled on the western and central portions of the island. The aims of this study are (1) to add new information on bat blood parasites in eastern Madagascar, and (2) to highlight biotic and abiotic variables driving prevalence across the island. Methods Fieldworks were undertaken from 2014 to 2016 in four sites in the eastern portion of Madagascar to capture bats and collect biological samples. Morphological and molecular techniques were used to identify the presence of haemosporidian parasites. Further, a MaxEnt modelling was undertaken using data from Polychromophilus melanipherus to identify variables influencing the presence of this parasite Results In total, 222 individual bats belonging to 17 species and seven families were analysed. Polychromophilus infections were identified in two families: Miniopteridae and Vespertilionidae. Molecular data showed that Polychromophilus spp. parasitizing Malagasy bats form a monophyletic group composed of three distinct clades displaying marked host specificity. In addition to P. melanipherus and P. murinus, hosted by Miniopterus spp. and Myotis goudoti, respectively, a novel Polychromophilus lineage was identified from a single individual of Scotophilus robustus. Based on the present study and the literature, different biotic and abiotic factors are shown to influence Polychromophilus infection in bats, which are correlated based on MaxEnt modelling. Conclusions The present study improves current knowledge on Polychromophilus blood parasites infecting Malagasy bats and confirms the existence of a novel Polychromophilus lineage in Scotophilus bats. Additional studies are needed to obtain additional material of this novel lineage to resolve its taxonomic relationship with known members of the genus. Further, the transmission mode of Polychromophilus in bats as well as its potential effect on bat populations should be investigated to complement the results provided by MaxEnt modelling and eventually provide a comprehensive picture of the biology of host-parasite interactions.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1583-1583 ◽  
Author(s):  
V. Oro ◽  
S. Živković ◽  
Ž. Ivanović ◽  
L. Waeyenberge

The most globally recognized and economically important nematode on wheat is the cereal cyst nematode (CCN) complex (1). One of the most important species of this group is Heterodera filipjevi (Madžidov, 1981) Mulvey and Golden, 1983. During regular soil quarantine control in September 2010, Heterodera sp. cysts were found in soil samples originating from a wheat field in Gunaroš, Vojvodina Province, in northern Serbia. The wheat was a winter crop grown in a dryland production system and had an average cyst density of 2.50/100 cm3 of soil. Morphologically, the cysts were golden brown and lemon shaped with a posterior protuberance. The vulval cone was bifenestrate with horseshoe-shaped semifenestra, bullae, and underbridge. Cyst measurements (n = 30) ranged as follows: cyst length (without neck): 511.50 to 899.00 μm, cyst width: 201.50 to 682.00 μm, fenestral length: 44.80 to 65.60 μm, fenestral width: 24.00 to 40.00 μm, vulval bridge length: 12.80 to 20.80 μm, vulval bridge width: 6.40 to 14.40 μm, vulval slit: 6.00 to 12.80 μm, and underbridge length: 60.00 to 112.00 μm. The second-stage juveniles had an offset head, stylet with characteristic anchor-shaped basal knobs, four incisures, and a conical tail with a rounded tip. The J2 morphometrics (n = 30) were: length: 447.30 to 611.10 μm, width: 22.40 to 25.60 μm, stylet: 20.80 to 24.00 μm, tail length: 56.00 to 68.80 μm, tail width: 14.40 to 19.20 μm, and hyaline length: 35.20 to 44.80 μm. The ITS region was used for molecular analysis. Each DNA sample was extracted from a single cyst. Sequencing was done with primers TW81 and AB28 (2). In comparison with other H. filipjevi populations, the obtained sequence (GenBank Accession No. JX235959) revealed 99 to 100% similarity. Morphological and molecular data confirmed the existence of H. filipjevi. This is, to our knowledge, the first report of H. filipjevi from Serbia. Since wheat has important socioeconomic value for Serbia, after extensive surveys, additional phytosanitary measures may be necessary to prevent the spread of this parasite. References: (1) J. M. Nicol et al. Current Nematode Threats to World Agriculture. Genomics and Molecular Genetics of Plant-Nematode Interactions, Springer, New York, 2011. (2) A. M. Skantar et al. J. Nematol. 39:133, 2007.


Mycotaxon ◽  
2019 ◽  
Vol 134 (3) ◽  
pp. 413-423
Author(s):  
Muhammad Ishaq ◽  
Arooj Naseer ◽  
Munazza Kiran ◽  
Muhammad Fiaz ◽  
Abdul Nasir Khalid

Amanita subjunquillea and its ectomycorrhizal association are reported for the first time from moist temperate Himalayan forests of Pakistan. The sample was studied based on morphological characters and nucleotide sequence analyses of the ITS region generated from basidiomata and ectomycorrhizal roots of Quercus floribunda. Our collection differs from the type in its dark orange pileus disc and pale yellow margins. Remaining morphological and molecular data are consistent with previously reported specimens. This represents the first report of A. subjunquillea from Pakistan.


Sign in / Sign up

Export Citation Format

Share Document