scholarly journals Whole-Genome Characterization of Rosa Chinensis AP2/ERF Transcription Factors and Analysis of Negative Regulator RcDREB2B in Arabidopsis

2020 ◽  
Author(s):  
Li Wei ◽  
Ziwen Geng ◽  
Zhang Cuiping ◽  
Wang Kuiling ◽  
Jiang Xinqiang

Abstract Background: Rose (Rosa chinensis) is a traditional famous flower with valuable ornamental characteristics. However, drought stress restricts its growth and development, leading to abnormal phenotype. APETALA2/ethylene-responsive factor (AP2/ERF) proteins are a kind of transcription factor (TF) protein groups in the plant kingdom, which are crucially involved in the growth and stress responses of most plants. Results: Our investigation focused on exploring the genome of rose and we discovered 135 apparent AP2/ERF TFs. Phylogenic analyses revealed that RcAP2/ERF genes are categorized into DREB, Soloist, AP2, and ERF subfamilies, and further classified these into 17 groups. Analysis of the gene structure revealed that the introns ranged from 0 to 9 in number. Pattern examination demonstrated that the RcAP2/ERF predominantly had typical AP2 domains, of which the 2nd motif is the most ubiquitous. Distributions of cis-acting elements showed members of the AP2/ERF family are involved in growth development and stress response in rose species. We carried out a distribution mapping of the seven rose chromosomes which revealed that AP2/ERF class genes are dispersed among all seven chromosomes. Additionally, we isolated a novel DREB A-2 subgroup gene and named it RcDREB2B. RcDREB2B transcript accumulation was repressed under mild drought and severe drought stress in the root samples of rose. RcDREB2B was targeted to the nucleus and exhibited transactivation in yeast cells. Overexpression of RcDREB2B resulted in enhanced sensitivity to high salt concentration, ABA, and PEG at the germination and post-germination stages. Twelve putative osmotic and ABA-related genes were impaired in RcDREB2B-overexpressing plants. Conclusion: The results provide comprehensive information regarding the gene structure, phylogenic, and distribution of rose AP2/ERF family and shed insight into the complex transcriptional gene regulation of RcAP2/ERF. Findings in this study would also contribute to further understanding of the RcDREB2B gene in rose.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Li ◽  
Ziwen Geng ◽  
Cuiping Zhang ◽  
Kuiling Wang ◽  
Xinqiang Jiang

Abstract Background Rose (Rosa chinensis) is a traditional famous flower with valuable ornamental characteristics. However, drought stress restricts its growth and development, leading to an abnormal phenotype. One of the main transcription factor (TF) protein groups in the plant kingdom are the APETALA2/ethylene-responsive factor (AP2/ERF) proteins and are potentially involved in the growth and stress responses of various plants. Results Our investigation mainly focused on exploring the genome of rose and thereby we discovered 135 apparent AP2/ERF TFs. Phylogenic analyses revealed that RcAP2/ERF genes are categorized into DREB, Soloist, AP2, and ERF subfamilies, and are further classified these into 17 groups, with the same as Malus domestica and Arabidopsis thaliana. The analysis of the gene structure revealed that the introns ranged from 0 to 9 in number. Pattern examination demonstrated that the RcAP2/ERF predominantly consists of typical AP2 domains, of which the 2nd motif is the most ubiquitous. Distributions of cis-acting elements indicated that members of the AP2/ERF family are frequently involved in growth and development, phytohormone and stress response in rose species. Also, the distribution mapping of the rose chromosomes indicated that AP2/ERF class genes are dispersed among all seven chromosomes. Additionally, we isolated a novel DREB A2 subgroup gene and named it RcDREB2B. Subsequently, the RcDREB2B transcript accumulation was repressed under the mild and severe drought stress in the root samples of rose. RcDREB2B was targeted to the nucleus and exhibited transactivation in yeast cells. The overexpression of RcDREB2B was found to promote sensitivity to a higher salt concentration, ABA, and PEG at the germination and post-germination stages. Twelve putative osmotic and ABA-related genes were impaired in RcDREB2B-overexpressing plants. Conclusions The results provide comprehensive information regarding the gene structure, phylogenic, and distribution of the rose AP2/ERF family and bring insight into the complex transcriptional gene regulation of RcAP2/ERF. Findings in this study would also contribute to further understanding of the RcDREB2B gene in rose.


2021 ◽  
Author(s):  
Wei Li ◽  
Ziwen Geng ◽  
Cuiping Zhang ◽  
Kuiling Wang ◽  
Xinqiang Jiang

Abstract Background: Rose (Rosa chinensis) is a traditional famous flower with valuable ornamental characteristics. However, drought stress restricts its growth and development, leading to an abnormal phenotype. One of the main transcription factor (TF) protein groups in the plant kingdom are the APETALA2/ethylene-responsive factor (AP2/ERF) proteins and are potentially involved in the growth and stress responses of various plants. Results: Our investigation mainly focused on exploring the genome of rose and thereby we discovered 135 apparent AP2/ERF TFs. Phylogenic analyses revealed that RcAP2/ERF genes are categorized into DREB, Soloist, AP2, and ERF subfamilies, and are further classified these into 17 groups, with the same as Malus domestica and Arabidopsis thaliana. The analysis of the gene structure revealed that the introns ranged from 0 to 9 in number. Pattern examination demonstrated that the RcAP2/ERF predominantly consists of typical AP2 domains, of which the 2nd motif is the most ubiquitous. Distributions of cis-acting elements indicated that members of the AP2/ERF family are frequently involved in growth and development, phytohormone and stress response in rose species. Also, the distribution mapping of the rose chromosomes indicated that AP2/ERF class genes are dispersed among all seven chromosomes. Additionally, we isolated a novel DREB A2 subgroup gene and named it RcDREB2B. Subsequently, the RcDREB2B transcript accumulation was repressed under the mild and severe drought stress in the root samples of rose. RcDREB2B was targeted to the nucleus and exhibited transactivation in yeast cells. The overexpression of RcDREB2B was found to promote sensitivity to a higher salt concentration, ABA, and PEG at the germination and post-germination stages. Twelve putative osmotic and ABA-related genes were impaired in RcDREB2B-overexpressing plants. Conclusions: The results provide comprehensive information regarding the gene structure, phylogenic, and distribution of the rose AP2/ERF family and bring insight into the complex transcriptional gene regulation of RcAP2/ERF. Findings in this study would also contribute to further understanding of the RcDREB2B gene in rose.


2020 ◽  
Author(s):  
Li Wei ◽  
Ziwen Geng ◽  
Zhang Cuiping ◽  
Wang Kuiling ◽  
Jiang Xinqiang

Abstract Background: Rose (Rosa chinensis) is a traditional famous flower with valuable ornamental characteristics. However, drought stress restricts its growth and development, leading to an abnormal phenotype. One of the main transcription factor (TF) protein groups in the plant kingdom are the APETALA2/ethylene-responsive factor (AP2/ERF) proteins and are potentially involved in the growth and stress responses of various plants. Results: Our investigation mainly focused on exploring the genome of rose and thereby we discovered 135 apparent AP2/ERF TFs. Phylogenic analyses revealed that RcAP2/ERF genes are categorized into DREB, Soloist, AP2, and ERF subfamilies, and are further classified these into 17 groups, with the same as Malus domestica and Arabidopsis thaliana. The analysis of the gene structure revealed that the introns ranged from 0 to 9 in number. Pattern examination demonstrated that the RcAP2/ERF predominantly consists of typical AP2 domains, of which the 2nd motif is the most ubiquitous. Distributions of cis-acting elements indicated that members of the AP2/ERF family are frequently involved in growth and development, phytohormone and stress response in rose species. Also, the distribution mapping of the rose chromosomes indicated that AP2/ERF class genes are dispersed among all seven chromosomes. Additionally, we isolated a novel DREB A2 subgroup gene and named it RcDREB2B. Subsequently, the RcDREB2B transcript accumulation was repressed under the mild and severe drought stress in the root samples of rose. RcDREB2B was targeted to the nucleus and exhibited transactivation in yeast cells. The overexpression of RcDREB2B was found to promote sensitivity to a higher salt concentration, ABA, and PEG at the germination and post-germination stages. Twelve putative osmotic and ABA-related genes were impaired in RcDREB2B-overexpressing plants. Conclusions: The results provide comprehensive information regarding the gene structure, phylogenic, and distribution of the rose AP2/ERF family and bring insight into the complex transcriptional gene regulation of RcAP2/ERF. Findings in this study would also contribute to further understanding of the RcDREB2B gene in rose.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261
Author(s):  
Md. Mahadi Hasan ◽  
Milan Skalicky ◽  
Mohammad Shah Jahan ◽  
Md. Nazmul Hossain ◽  
Zunaira Anwar ◽  
...  

In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants’ ability to tolerate drought stress. Spm’s role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.


2015 ◽  
Vol 66 (8) ◽  
pp. 817 ◽  
Author(s):  
Hang T. T. Vu ◽  
A. Kilian ◽  
A. T. James ◽  
L. M. Bielig ◽  
R. J. Lawn

This study applied newly developed Diversity Arrays Technology (DArT) and soybean and mungbean DArT libraries for quantitative trait locus (QTL) linkage analysis in recombinant inbred lines (RILs) from three soybean crosses that had previously been assessed for physiological response to severe drought stress. The phenotypic assessments had identified statistically significant genetic variation among and within the RIL populations and their parents for three drought-related responses: epidermal conductance (ge) and relative water content (RWC) during stress, and plant recovery after stress. The new linkage maps containing only DArT markers for the three populations individually contained 196–409 markers and 15–22 linkage groups (LGs), with an aggregate length ranging from 409.4 to 516.7 cM. An integrated map constructed by using the marker data from all three RIL populations comprised 759 DArT markers, 27 LGs and an expanded length of 762.2 cM. Two populations with the landrace accession G2120 as a parent, CPI 26671 × G2120 (CG) and Valder × G2120 (VG), respectively contained 106 and 34 QTLs. In each of these populations, 10 LGs harboured QTLs associated with RWC, ge and recovery ability, of which six similar LGs were associated with drought tolerance. A BLAST (Basic Local Alignment Search Tool) search for sequences of 19 selected DArT markers linked to QTLs conditioning the drought-response traits indicated that 18 DArT markers were unique and aligned to 12 soybean chromosomes. Comparison of these sequenced DArT markers with other markers associated with drought-related QTLs in previously reported studies using other marker types confirmed that five of them overlapped, whereas the remaining 13 were new. Except for chromosome 15, the chromosomes with which the DArT QTLs in the CG and VG populations were associated were those that had been shown to harbour drought-related QTLs in previous studies. A BLASTx protein database search identified soPt-856602 as being associated with the gene for a probable glycosyltransferase At5g03795-like isoform X1 on chromosome 6. Although the several QTLs identified in the study were all of relatively minor effect, it was concluded that, because the DArT technology involves large numbers of markers and enables many lines to be genotyped simultaneously, it should help the process of manipulating multiple QTLs and so enhance their likely cumulative effect.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Liang ◽  
Kunhua Wei ◽  
Fan Wei ◽  
Shuangshuang Qin ◽  
Chuanhua Deng ◽  
...  

Abstract Background Sophora tonkinensis Gagnep is a traditional Chinese medical plant that is mainly cultivated in southern China. Drought stress is one of the major abiotic stresses that negatively impacts S. tonkinensis growth. However, the molecular mechanisms governing the responses to drought stress in S. tonkinensis at the transcriptional and posttranscriptional levels are not well understood. Results To identify genes and miRNAs involved in drought stress responses in S. tonkinensis, both mRNA and small RNA sequencing was performed in root samples under control, mild drought, and severe drought conditions. mRNA sequencing revealed 66,476 unigenes, and the differentially expressed unigenes (DEGs) were associated with several key pathways, including phenylpropanoid biosynthesis, sugar metabolism, and quinolizidine alkaloid biosynthesis pathways. A total of 10 and 30 transcription factors (TFs) were identified among the DEGs under mild and severe drought stress, respectively. Moreover, small RNA sequencing revealed a total of 368 miRNAs, including 255 known miRNAs and 113 novel miRNAs. The differentially expressed miRNAs and their target genes were involved in the regulation of plant hormone signal transduction, the spliceosome, and ribosomes. Analysis of the regulatory network involved in the response to drought stress revealed 37 differentially expressed miRNA-mRNA pairs. Conclusion This is the first study to simultaneously profile the expression patterns of mRNAs and miRNAs on a genome-wide scale to elucidate the molecular mechanisms of the drought stress responses of S. tonkinensis. Our results suggest that S. tonkinensis implements diverse mechanisms to modulate its responses to drought stress.


2020 ◽  
Vol 21 (13) ◽  
pp. 4701
Author(s):  
Qing He ◽  
Hanyang Cai ◽  
Mengyan Bai ◽  
Man Zhang ◽  
Fangqian Chen ◽  
...  

The basic leucine zipper (bZIP) is a plant-specific transcription factor family that plays crucial roles in response to biotic and abiotic stresses. However, little is known about the function of bZIP genes in soybean. In this study, we isolated a bZIP gene, GmbZIP19, from soybean. A subcellular localization study of GmbZIP19 revealed its nucleus localization. We showed that GmbZIP19 expression was significantly induced by ABA (abscisic acid), JA (jasmonic acid) and SA (salicylic acid), but reduced under salt and drought stress conditions. Further, GmbZIP19 overexpression Arabidopsis lines showed increased resistance to S. sclerotiorum and Pseudomonas syringae associated with upregulated ABA-, JA-, ETH- (ethephon-)and SA-induced marker genes expression, but exhibited sensitivity to salt and drought stresses in association with destroyed stomatal closure and downregulated the salt and drought stresses marker genes’ expression. We generated a soybean transient GmbZIP19 overexpression line, performed a Chromatin immunoprecipitation assay and found that GmbZIP19 bound to promoters of ABA-, JA-, ETH-, and SA-induced marker genes in soybean. The yeast one-hybrid verified the combination. The current study suggested that GmbZIP19 is a positive regulator of pathogen resistance and a negative regulator of salt and drought stress tolerance.


2019 ◽  
Vol 20 (2) ◽  
pp. 394 ◽  
Author(s):  
Linsen Pei ◽  
Lu Peng ◽  
Xia Wan ◽  
Jie Xiong ◽  
Zhibin Liu ◽  
...  

Abscisic acid (ABA) plays a fundamental role in plant growth and development, as well as in the responses to abiotic stresses. Previous studies have revealed that many components in ABA and drought stress signaling pathways are ubiquitinated by E3 ligases. In this study, AtPPRT1, a putative C3HC4 zinc-finger ubiquitin E3 ligase, was explored for its role in abiotic stress response in Arabidopsis thaliana. The expression of AtPPRT1 was induced by ABA. In addition, the β-glucuronidase (GUS) gene driven by the AtPPRT1 promoter was more active in the root hair zone and root tips of primary and major lateral roots of young seedlings in the presence of ABA. The assays for seed germination, stomatal aperture, root length, and water deficit demonstrated that the AtPPRT1-overexpressing Arabidopsis was insensitive to ABA and sensitive to drought stress compared with wild-type (WT) plants. The analysis by quantitative real-time PCR (qRT-PCR) revealed that the expression of three stress-inducible genes (AtRAB18, AtERD10, and AtKIN1) were upregulated in the atpprt1 mutant and downregulated in AtPPRT1-overexpressing plants, while two ABA hydrolysis genes (AtCYP707A1 and AtCYP707A3) were downregulated in the atpprt1 mutant and upregulated in AtPPRT1-overexpressing plants in the presence of ABA. AtPPRT1 was localized in the mitochondria. Our findings indicate that AtPPRT1 plays a negative role in ABA and drought stress responses.


2015 ◽  
Vol 66 (8) ◽  
pp. 802 ◽  
Author(s):  
Hang T. T. Vu ◽  
A. T. James ◽  
R. J. Lawn ◽  
L. M. Bielig ◽  
A. Kilian

Physiological drought stress responses were assessed in recombinant inbred lines (RILs) from three soybean (Glycine max (L.) Merr.) crosses, in preparation for quantitative trait locus (QTL) analyses using Diversity Arrays Technology (DArT) markers. The three RIL populations were derived from pairwise crosses between three genotypes, cv. Valder, CPI 26671 and G2120, which in previous studies had differed in drought-stress response. Of particular interest was the landrace variety G2120, which in the previous reports had recovered better after severe drought. To assess drought-stress response, the plants were grown in deep cylindrical pots in the glasshouse and exposed to severe water deficit followed by re-watering. Two plants to be genotyped were grown in each pot, together with one plant of G2120, which served as a reference plant against which the responses of the two other plants were assessed. Traits recorded included measures of relative water content (RWC), epidermal conductance (ge) and recovery in growth following re-watering. The responses in the reference and parental plants and the RIL populations were broadly consistent with previous studies. As plant-available water in the soil declined, both RWC and ge declined, although the relation between RWC and ge was exponential, rather than linear as in previous studies. Analysis of variance revealed large environmental effects on most of the traits, which resulted in high coefficients of variation and low estimates of broad-sense heritability. However, there were significant differences at both the population and genotype levels for all key traits, confirming the presence of genetic variation for drought-stress response. Some opportunities for enhancing the observed genetic differences and reducing the environmental noise in future studies are canvassed. Application of the observed phenotypic data reported in this paper in subsequent QTL analyses based on DArT markers is reported in the companion paper.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 327
Author(s):  
Xiang-Ying Xiang ◽  
Jia Chen ◽  
Wen-Xin Xu ◽  
Jia-Rui Qiu ◽  
Li Song ◽  
...  

The resurrection plants Myrothamnus flabellifolia can survive long term severe drought and desiccation conditions and soon recover after rewatering. However, few genes related to such excellent drought tolerance and underlying molecular mechanism have been excavated. WRKY transcription factors play critical roles in biotic and abiotic stress signaling, in which WRKY70 functions as a positive regulator in biotic stress response but a negative regulator in abiotic stress signaling in Arabidopsis and some other plant species. In the present study, the functions of a dehydration-induced MfWRKY70 of M. flabellifolia participating was investigated in the model plant Arabidopsis. Our results indicated that MfWRKY70 was localized in the nucleus and could significantly increase tolerance to drought, osmotic, and salinity stresses by promoting root growth and water retention, as well as enhancing the antioxidant enzyme system and maintaining reactive oxygen species (ROS) homeostasis and membrane-lipid stability under stressful conditions. Moreover, the expression of stress-associated genes (P5CS, NCED3 and RD29A) was positively regulated in the overexpression of MfWRKY70 Arabidopsis. We proposed that MfWRKY70 may function as a positive regulator for abiotic stress responses and can be considered as a potential gene for improvement of drought and salinity tolerance in plants.


Sign in / Sign up

Export Citation Format

Share Document