scholarly journals UFL1 Relieves Cisplatin-Induced Premature Ovarian Failure by Reducing Endoplasmic Reticulum Stress in Granulosa Cells

Author(s):  
Xiangting Tang ◽  
Hao Dong ◽  
Zhi Fang ◽  
Jingyi Li ◽  
Qi Yang ◽  
...  

Abstract BackgroundUbiquitin-like modifier 1 ligating enzyme 1 (UFL1), the ligase of the Ufmylation system, has recently been reported to be involved in apoptosis and endoplasmic reticulum stress (ER stress) in a variety of diseases. Premature ovarian failure (POF) is a gynecological disease that severely reduces the fertility of women, especially in female cancer patients receiving chemotherapy drugs. Whether UFL1 is involved in the protection from chemotherapy-induced POF and its mechanism remains unclear. MethodsIn this study, we examined the function of UFL1 in ovarian dysfunction and granular cells (GCs) apoptosis induced by cisplatin through histological examination and cell viability analysis. We used western blot, quantitative real-time PCR (qPCR) and immunofluorescence (IF) to detect the expression of UFL1 and the level of ER stress specific makers. Enzyme-Linked Immunosorbent Assays were used to detect the level of Follicle-Stimulating Hormone (FSH) and Estrogen (E2) in ovaries and GCs. In addition, we knocked down or overexpressed UFL1 in ovaries or GCs through infected with lentiviral particle suspensions, respectively. ResultsOur data showed that the expression of UFL1 was reduced in POF model ovaries and was accompanied by the occurrence of ER stress. In vitro, cisplatin induced a stressful increase of UFL1 expression in GCs, and enhanced ER stress, which was aggravated by UFL1 knockdown and alleviated by UFL1 overexpression. Furthermore, the data showed that UFL1 knockdown resulted in a decrease of ovarian follicles number, an increase of atretic follicles, and a decreased expression of AMH and FSHR. Conversely, overexpression of UFL1 reduced the damage of cisplatin to the ovary in vitro. ConclusionsOur research proved that UFL1 regulates cisplatin-induced ER stress and apoptosis of GCs, and participates in the protection from cisplatin-induced POF, providing a potential therapeutic target for clinical prevention of chemotherapeutic drug-induced POF.

2020 ◽  
Author(s):  
WEN CHEN ◽  
ZHE LIU ◽  
CHENZHOU WU ◽  
YAFEI CHEN ◽  
LING QIU ◽  
...  

Abstract Background C18 ceramide (CER) plays an important role in the occurrence and development of oral squamous cell carcinoma (OSCC). However, the function of ceramide synthase 1 (CERS1), a key enzyme in C18 CER synthesis, in OSCC is still unclear. The aim of our study was to investigate the relationship between CERS1 and oral cancer. Methods The expression of CERS1 on 48 pairs of matching OSCC patients’ cancer and normal tissues was determined by quantitative real-time PCR (RT-PCR). A mouse OSCC model induced by 4-nitroquinolin-1-oxide (4NQO) was established on CERS1+/+ and CERS1-/- C57BL/N6 mice. The functions of CERS1 downregulated were accessed by cell counting kit-8 method, colony formation assay, EdU DNA Proliferation in vitro Detection, wound healing test and Annexin V/PI double staining. RT-PCR, Western blot and luciferase assay were performed to explore the molecular mechanisms of CERS1. Results In this study, we found that the expression of CERS1 was downregulated in oral cancer tissues and cell lines. In the mouse OSCC model, CERS1 knockout was associated with the severity of oral malignant transformation. Immunohistochemical studies showed significant upregulation of PCNA, MMP2, MMP9, and BCL2 expression and downregulation of BAX expression in the pathological hyperplastic area. In addition, CERS1 knockdown promoted cell proliferation, migration and invasion in vitro. CERS1 knockdown caused endoplasmic reticulum stress (ER stress) and induced the activating transcription factor 4 (ATF4) pathway. ATF4 upregulated VEGFA transcription to promote tumor growth and metastasis. In addition, mild ER stress caused by CERS1 knockdown could induce cisplatin resistance. Conclusions Our study suggests that CERS1 is downregulated in oral cancer. The downregulation of CERS1 promotes the aggressiveness of OSCC and chemotherapeutic drug resistance by inducing mild ER stress.


2015 ◽  
Vol 6 (10) ◽  
pp. 3275-3281 ◽  
Author(s):  
Elena Giordano ◽  
Olivier Dangles ◽  
Njara Rakotomanomana ◽  
Silvia Baracchini ◽  
Francesco Visioli

Endoplasmic reticulum (ER) stress is important for atherosclerosis development and is mediated by the unfolded protein response (UPR).


2017 ◽  
Author(s):  
Sankat Mochan ◽  
Manoj Kumar Dhingra ◽  
Betsy Varghese ◽  
Sunil Kumar Gupta ◽  
Shobhit saxena ◽  
...  

AbstractBackgroundThe concentration of sFlt-1, a major anti-angiogenic protein in maternal circulation has been seen to be raised in preeclamptic pregnancies. Endoplasmic reticulum (ER) stress represents one of the three (immunological, oxidative and ER stress) major stresses which placenta undergoes during pregnancies. The present study is designed to investigate the role of sFlt-1 in induction of ER stress in trophoblast cells.Materials and MethodsMaternal serum levels of anti-angiogenic protein sFlt-1 and central regulator of unfolded protein response GRP78 was measured using sandwich ELISA. The expression of various ER stress markers (GRP78, eIF2α, XBP1, ATF6 and apoptotic protein CHOP) were analyzed depending on various treatments given to the trophoblast cells using Immunofluorescence, western blot and q-RT PCR.ResultsIncreased expression of ER stress markers (GRP78, eIF2α, XBP1 ATF6 and apoptotic protein CHOP) was detected in the placental trophoblast cells treated with raised concentration of sFlt-1.ConclusionSignificant upregulated expression of ER stress markers in trophoblast cells exposed with increased concentration of sFlt-1 suggested that it may be one of the anti-angiogenic factors present in maternal sera which not only contributes to oxidative stress but also may cause endoplasmic reticulum stress.


2018 ◽  
Author(s):  
Sankat Mochan ◽  
Manoj Kumar Dhingra ◽  
Sunil Kumar Gupta ◽  
Shobhit saxena ◽  
Pallavi Arora ◽  
...  

AbstractPreeclampsia (PE) and its subtypes (early and late onset) are serious concerns all across the globe affecting about 8% of total pregnancies and accounts for approximately 60,000 deaths annually with a predominance in developing under-developed and countries. The two-stage model in the progression of this disease, deficient spiral artery remodelling and an imbalance between angiogenic (VEGF) and anti-antigenic factor(s) (sFlt-1) are well established facts pertaining to this disease. The presence of increased sFlt-1, high oxidative stress and Endoplasmic reticulum stress (ER stress) have been proposed in preeclamptic pregnancies. Recently, the role of endoplasmic reticulum stress in the onset of the variant forms of PE highlighted a new window to explore further. In our previous studies, we demonstrated that sFlt-1 can induce apoptosis and oxidative stress in trophoblast cells. However the role of sFlt-1, in inducing ER stress is not known so far. In the present study, we for the first time demonstrated significant ER stress in the placental cells (BeWo Cells) (in vitro) when exposed to sera from preeclamptic pregnancies having increased concentration of sFlt-1. The expression of ER stress markers (GRP78, eIF2α, XBP1, ATF6 and CHOP) at both transcript and protein levels were compared (between preeclamptic and normotensive non-proteinuric women) at three different time points (8h, 14h and 24hrs), analyzed and found to be significant (p<0.05).ConclusionOur results suggested that sFlt-1, released from placental cells in preeclampsia may be one of the various factors having potential to induce endoplasmic reticulum stress in BeWo cells.


2021 ◽  
Author(s):  
Yi Yuan ◽  
Pengfei Jiao ◽  
Zeyu Wang ◽  
Mengqi Chen ◽  
Hongming Du ◽  
...  

Abstract Background Endoplasmic reticulum stress (ER stress) fosters cancer cell escape from immune surveillance and upregulate PD-L1 expression, but the mechanisms remain unclear. Methods We analyzed protein levels by immunofluorescence and Western blotting, RNA levels by qRT-PCR. Exosomes were injected intravenously through the tail vein into 6-week-old nude mice once every other day for a total of 10 injections Results Expression of some ER stress markers, including GRP78 (glucose-regulated protein 78), ATF6 (activating transcription factor 6) and PERK (PKR-like endoplasmic reticulum kinase), was upregulated in OSCC tissues and correlated with poor overall survival. The level of ER stress-related proteins positively correlated with a cluster of PD-L1 expression and macrophage infiltration in OSCC tissues. PD-L1 expression in OSCC tissues was negatively correlated with cumulative survival. Incubation with Exo-ER upregulated PD-L1 levels in macrophages in vitro and vivo, and upregulation of PD-L1 promoted macrophage polarisation towards the M2 subtype. Conclusions ER stress induced exosome secretion by OSCC cells and PD-L1 expression in macrophages to promote M2 macrophage differentiation. A novel exosome-modulated mechanism was delineated for OSCCs-macropahge crosstalk that drove tumor growth and should be explored for its therapeutic utility.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiaolin Li ◽  
Sixuan Liu ◽  
Xuan Chen ◽  
Run Huang ◽  
Lisi Ma ◽  
...  

AbstractChemotherapy-induced ovarian dysfunction is a serious adverse effect in premenopausal patients with cancer. Gonadotrophin-releasing hormone analogs (GnRHa) protect ovarian function, but its molecular mechanisms have not yet been determined. In this study, we attempted to determine the previously unknown molecular mechanism by which such protection occurs. Serum anti-Müllerian hormone (AMH) levels were tested in tumor-bearing nude mice, a series of exploratory experiments were conducted. We discovered that GnRHa protects granulosa cells from chemotherapeutic toxicity in vivo and in vitro. We also showed that CTX-induced endoplasmic reticulum stress inhibits the secretion of AMH, and treatment with GnRHa relieves ER stress and the subsequent unfolded-protein response by modulating mTOR signaling to induce autophagy. The results of mechanistic studies indicated that GnRHa-modulated mTOR signaling to induce autophagy, which alleviated CTX-induced ER stress and promoted the secretion of AMH.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adrien Le Thomas ◽  
Elena Ferri ◽  
Scot Marsters ◽  
Jonathan M. Harnoss ◽  
David A. Lawrence ◽  
...  

AbstractInositol requiring enzyme 1 (IRE1) mitigates endoplasmic-reticulum (ER) stress by orchestrating the unfolded-protein response (UPR). IRE1 spans the ER membrane, and signals through a cytosolic kinase-endoribonuclease module. The endoribonuclease generates the transcription factor XBP1s by intron excision between similar RNA stem-loop endomotifs, and depletes select cellular mRNAs through regulated IRE1-dependent decay (RIDD). Paradoxically, in mammals RIDD seems to target only mRNAs with XBP1-like endomotifs, while in flies RIDD exhibits little sequence restriction. By comparing nascent and total IRE1α-controlled mRNAs in human cells, we identify not only canonical endomotif-containing RIDD substrates, but also targets without such motifs—degraded by a process we coin RIDDLE, for RIDD lacking endomotif. IRE1α displays two basic endoribonuclease modalities: highly specific, endomotif-directed cleavage, minimally requiring dimers; and more promiscuous, endomotif-independent processing, requiring phospho-oligomers. An oligomer-deficient IRE1α mutant fails to support RIDDLE in vitro and in cells. Our results advance current mechanistic understanding of the UPR.


2019 ◽  
Vol 19 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Wenjiao Shi ◽  
Zhixin Guo ◽  
Ruixia Yuan

Background and Objective: This study investigated whether rapamycin has a protective effect on the testis of diabetic rats by regulating autophagy, endoplasmic reticulum stress, and oxidative stress. Methods: Thirty male Sprague-Dawley rats were randomly divided into three groups: control, diabetic, and diabetic treated with rapamycin, which received gavage of rapamycin (2mg.kg-1.d-1) after induction of diabetes. Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ, 65mg.Kg-1). All rats were sacrificed at the termination after 8 weeks of rapamycin treatment. The testicular pathological changes were determined by hematoxylin and eosin staining. The protein or mRNA expression of autophagy-related proteins (Beclin1, microtubule-associated protein light chain 3 (LC3), p62), ER stress marked proteins (CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), caspase-12), oxidative stress-related proteins (p22phox, nuclear factor erythroid2-related factor 2 (Nrf2)) and apoptosis-related proteins (Bax, B cell lymphoma-2 (Bcl-2)) were assayed by western blot or real-time fluorescence quantitative PCR. Results: There were significant pathological changes in the testes of diabetic rats. The expression of Beclin1, LC3, Nrf2, Bcl-2 were significantly decreased and p62, CHOP, caspase12, p22phox, and Bax were notably increased in the testis of diabetic rats (P <0.05). However, rapamycin treatment for 8 weeks significantly reversed the above changes in the testis of diabetic rats (P <0.05). Conclusion: Rapamycin appears to produce a protective effect on the testes of diabetic rats by inducing the expression of autophagy and inhibiting the expression of ER-stress, oxidative stress, and apoptosis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wen Chen ◽  
Chenzhou Wu ◽  
Yafei Chen ◽  
Yuhao Guo ◽  
Ling Qiu ◽  
...  

AbstractC18 ceramide plays an important role in the occurrence and development of oral squamous cell carcinoma. However, the function of ceramide synthase 1, a key enzyme in C18 ceramide synthesis, in oral squamous cell carcinoma is still unclear. The aim of our study was to investigate the relationship between ceramide synthase 1 and oral cancer. In this study, we found that the expression of ceramide synthase 1 was downregulated in oral cancer tissues and cell lines. In a mouse oral squamous cell carcinoma model induced by 4-nitroquinolin-1-oxide, ceramide synthase 1 knockout was associated with the severity of oral malignant transformation. Immunohistochemical studies showed significant upregulation of PCNA, MMP2, MMP9, and BCL2 expression and downregulation of BAX expression in the pathological hyperplastic area. In addition, ceramide synthase 1 knockdown promoted cell proliferation, migration, and invasion in vitro. Overexpression of CERS1 obtained the opposite effect. Ceramide synthase 1 knockdown caused endoplasmic reticulum stress and induced the VEGFA upregulation. Activating transcription factor 4 is responsible for ceramide synthase 1 knockdown caused VEGFA transcriptional upregulation. In addition, mild endoplasmic reticulum stress caused by ceramide synthase 1 knockdown could induce cisplatin resistance. Taken together, our study suggests that ceramide synthase 1 is downregulated in oral cancer and promotes the aggressiveness of oral squamous cell carcinoma and chemotherapeutic drug resistance.


Sign in / Sign up

Export Citation Format

Share Document