scholarly journals The Mechanisms of Yinchensini Decoction in Treating Hepatitis B were Explored by Network Pharmacology and Existing Literatures

Author(s):  
Xun Zhang ◽  
Xudong Liu ◽  
Xingqiu Liang ◽  
Xia Liu ◽  
Jian Liang

Abstract As one of the classic traditional Chinese medicine prescriptions for treating hepatitis B and its related diseases, Yinchensini Decoction has been widely accepted after the thousands of years of spread. However, until now, the underlying molecular mechanisms are remained unclear. Therefore, this study adopts the method of network pharmacology to explore the mechanisms of Yinchensini Decoction in the treatment of hepatitis B. Due to the limitation of experimental conditions, we finally decided to verify the explored mechanisms in the way of existing literatures. The components and related targets of Yinchensini Decoction were screened by the TCMSP database, the targets were converted into gene symols through uniform ID conversion in the Uniprot database. The gene targets of hepatitis B were screened out through the GeneCards database, the gene targets of Yinchensini Decoction for the treatment of hepatitis B were obtained by intersecting the gene targets of Yinchensini Decoction with those of hepatitis B. The STRING database was used to analyze the protein-protein interaction of the intersecting genes, and the metascape database was used to analyze the Gene Ontology and the KEGG pathway of the intersecting genes. Cytoscape3.8.2 was used for mapping various networks and for the specific analysis of various networks. The results show that: quercetin, kaempferol, beta-sitosterol, naringenin, Licochalcone a are the main active ingredients of the Yinchensini Decoction in the treatment of hepatitis B. The main gene targets of these components are TP53, TNF, IFNG, IL6, IL10, MYC, IKBKB, BCL2, STAT1, CHUK. The main mechanisms of these components are MAPK signaling, PI3K signaling, TGFB signaling, JAK-STAT signaling, TLR signaling, RLR signaling, IFN Signaling, chemokine signaling, cell cycle, apoptosis, transcription. In addition, through the analysis of relevant data in the network, about the specific disease of hepatitis B, the herbs in Yinchensini Decoction are ranked according to their importance: yinchen > gancao > ganjiang, fuzi, which are very consistent with the concept of the traditional Chinese medicine theory. Finally, the mechanisms of Yinchensini Decoction through network pharmacology in the treatment of hepatitis B were verified by the relevant literatures. To sum up, the combined application of network pharmacology and relevant literatures validation provides a new practical research strategy for the study of the mechanisms of complex traditional Chinese medicine prescriptions or extremely dangerous substances.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Asi He ◽  
Wei Wang ◽  
Yang Xia ◽  
Xiaoping Niu

Background. As a traditional Chinese medicine, Artemisiae scopariae Herba (ASH) is used to treat various liver diseases. The purpose of this study was to explore the mechanisms of ASH for treating chronic hepatitis B (CHB) using a network pharmacological method. Methods. Bioactive ingredients and related targets of ASH were obtained from Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Gene names of targets were extracted from UniProt database. Differentially expressed genes (DEGs) of CHB were obtained from microarray dataset GSE83148. The intersect genes between DEGs and target genes were annotated using clusterProfiler package. The STRING database was used to obtain a network of protein-protein interactions. Cytoscape 3.7.2 was used to construct the “ingredient-gene-pathway” (IGP) network. Molecular docking studies were performed using Autodock vina. Results. A total of 13 active components were extracted from TCMSP database. Fifteen intersect genes were obtained between 183 target genes and 403 DEGs of GSE83148. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results showed that ASH against CHB mainly involved in toll-like receptor signaling pathway, cellular senescence, hepatitis B, and chemokine signaling pathway. We screened one hub compound, five core targets, and four key pathways from constructed networks. The docking results indicated the strong binding activity between quercetin and AKT1. Conclusions. This study provides potential molecular mechanisms of ASH against CHB based on exploration of network pharmacology.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiayan Wu ◽  
Shengkun Hong ◽  
Xiankuan Xie ◽  
Wangmi Liu

Objective. Dipsaci Radix (DR) has been used to treat fracture and osteoporosis. Recent reports have shown that myeloid cells from bone marrow can promote the proliferation of lung cancer. However, the action and mechanism of DR has not been well defined in lung cancer. The aim of the present study was to define molecular mechanisms of DR as a potential therapeutic approach to treat lung cancer. Methods. Active compounds of DR with oral bioavailability ≥30% and drug-likeness index ≥0.18 were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform. The potential target genes of the active compounds and bone were identified by PharmMapper and GeneCards, respectively. The compound-target network and protein-protein interaction network were built by Cytoscape software and Search Tool for the Retrieval of Interacting Genes webserver, respectively. GO analysis and pathway enrichment analysis were performed using R software. Results. Our study demonstrated that DR had 6 active compounds, including gentisin, sitosterol, Sylvestroside III, 3,5-Di-O-caffeoylquinic acid, cauloside A, and japonine. There were 254 target genes related to these active compounds as well as to bone. SRC, AKT1, and GRB2 were the top 3 hub genes. Metabolisms and signaling pathways associated with these hub genes were significantly enriched. Conclusions. This study indicated that DR could exhibit the anti-lung cancer effect by affecting multiple targets and multiple pathways. It reflects the traditional Chinese medicine characterized by multicomponents and multitargets. DR could be considered as a candidate for clinical anticancer therapy by regulating bone physiological functions.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Kunmin Xiao ◽  
Kexin Li ◽  
Sidan Long ◽  
Chenfan Kong ◽  
Shijie Zhu

Breast cancer is one of the most common cancers endangering women’s health all over the world. Traditional Chinese medicine is increasingly recognized as a possible complementary and alternative therapy for breast cancer. Chaihu-Shugan-San is a traditional Chinese medicine prescription, which is extensively used in clinical practice. Its therapeutic effect on breast cancer has attracted extensive attention, but its mechanism of action is still unclear. In this study, we explored the molecular mechanism of Chaihu-Shugan-San in the treatment of breast cancer by network pharmacology. The results showed that 157 active ingredients and 8074 potential drug targets were obtained in the TCMSP database according to the screening conditions. 2384 disease targets were collected in the TTD, OMIM, DrugBank, GeneCards disease database. We applied the Bisogenet plug-in in Cytoscape 3.7.1 to obtain 451 core targets. The biological process of gene ontology (GO) involves the mRNA catabolic process, RNA catabolic process, telomere organization, nucleobase-containing compound catabolic process, heterocycle catabolic process, and so on. In cellular component, cytosolic part, focal adhesion, cell-substrate adherens junction, and cell-substrate junction are highly correlated with breast cancer. In the molecular function category, most proteins were addressed to ubiquitin-like protein ligase binding, protein domain specific binding, and Nop56p-associated pre-rRNA complex. Besides, the results of the KEGG pathway analysis showed that the pathways mainly involved in apoptosis, cell cycle, transcriptional dysregulation, endocrine resistance, and viral infection. In conclusion, the treatment of breast cancer by Chaihu-Shugan-San is the result of multicomponent, multitarget, and multipathway interaction. This study provides a certain theoretical basis for the treatment of breast cancer by Chaihu-Shugan-San and has certain reference value for the development and application of new drugs.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wenhao Niu ◽  
Feng Wu ◽  
Haiming Cui ◽  
Wenyue Cao ◽  
YuChieh Chao ◽  
...  

“Three formulas and three medicines,” which include Jinhua Qinggan granule, Lianhua Qingwen capsule/granule, Xuebijing injection, Qingfei Paidu decoction, HuaShiBaiDu formula, and XuanFeiBaiDu granule, have been proven to be effective in curbing coronavirus disease 2019 (COVID-19), according to the State Administration of Traditional Chinese Medicine. The aims of this study were to identify the active components of “Three formulas and three medicines” that can be used to treat COVID-19, determine their mechanism of action via angiotensin-converting enzyme 2 (ACE2) by integrating network pharmacological approaches, and confirm the most effective components for COVID-19 treatment or prevention. We investigated all the compounds present in the aforementioned herbal ingredients. Compounds that could downregulate the transcription factors (TFs) of ACE2 and upregulate miRNAs of ACE2 were screened via a network pharmacology approach. Hepatocyte nuclear factor 4 alpha (HNF4A), peroxisome proliferator-activated receptor gamma (PPARG), hsa-miR-2113, and hsa-miR-421 were found to regulate ACE2. Several compounds, such as quercetin, decreased ACE2 expression by regulating the aforementioned TFs or miRNAs. After comparison with the compounds present in Glycyrrhiza Radix et Rhizoma, quercetin, glabridin, and gallic acid present in the herbal formulas and medicines were found to alter ACE2 expression. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to search for possible molecular mechanisms of these compounds. In conclusion, traditional Chinese medicine (TCM) plays a pivotal role in the prevention and treatment of COVID-19. Quercetin, glabridin, and gallic acid, the active components of recommended TCM formulas and medicines, can inhibit COVID-19 by downregulating ACE2.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Chun-Li Piao ◽  
Jin-Li Luo ◽  
De Jin ◽  
Cheng Tang ◽  
Li Wang ◽  
...  

Abstract Introduction Radix Salviae (Dan-shen in pinyin), a classic Chinese herb, has been extensively used to treat diabetic retinopathy in clinical practice in China for many years. However, the pharmacological mechanisms of Radix Salviae remain vague. The aim of this study was to decrypt the underlying mechanisms of Radix Salviae in the treatment of diabetic retinopathy using a systems pharmacology approach. Methods A network pharmacology-based strategy was proposed to elucidate the underlying multi-component, multi-target, and multi-pathway mode of action of Radix Salviae against diabetic retinopathy. First, we collected putative targets of Radix Salviae based on the Traditional Chinese Medicine System Pharmacology database and a network of the interactions among the putative targets of Radix Salviae and known therapeutic targets of diabetic retinopathy was built. Then, two topological parameters, “degree” and “closeness certainty” were calculated to identify the major targets in the network. Furthermore, the major hubs were imported to the Database for Annotation, Visualization and Integrated Discovery to perform a pathway enrichment analysis. Results A total of 130 nodes, including 18 putative targets of Radix Salviae, were observed to be major hubs in terms of topological importance. The results of pathway enrichment analysis indicated that putative targets of Radix Salviae mostly participated in various pathways associated with angiogenesis, protein metabolism, inflammatory response, apoptosis, and cell proliferation. The putative targets of Radix Salviae (vascular endothelial growth factor, matrix metalloproteinases, plasminogen, insulin-like growth factor-1, and cyclooxygenase-2) were recognized as active factors involved in the main biological functions of treatment, which implied that these were involved in the underlying mechanisms of Radix Salviae on diabetic retinopathy. Conclusions Radix Salviae could alleviate diabetic retinopathy via the molecular mechanisms predicted by network pharmacology. This research demonstrates that the network pharmacology approach can be an effective tool to reveal the mechanisms of traditional Chinese medicine from a holistic perspective.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Fangchen Liu ◽  
Ling Li ◽  
Jian Chen ◽  
Ying Wu ◽  
Yongbing Cao ◽  
...  

Background. Calculus Bovis is a valuable Chinese medicine, which is widely used in the clinical treatment of ischemic stroke. The present study is aimed at investigating its target and the mechanism involved in ischemic stroke treatment by network pharmacology. Methods. Effective compounds of Calculus Bovis were collected using methods of network pharmacology and using the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) and the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Potential compound targets were searched in the TCMSP and SwissTargetPrediction databases. Ischemic stroke-related disease targets were searched in the Drugbank, DisGeNet, OMIM, and TTD databases. These two types of targets were uploaded to the STRING database, and a network of their interaction (PPI) was built with its characteristics calculated, aiming to reveal a number of key targets. Hub genes were selected using a plug-in of the Cytoscape software, and Gene Ontology (GO) biological processes and pathway enrichment analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted using the clusterProfiler package of R language. Results. Among 12 compounds, deoxycorticosterone, methyl cholate, and biliverdin were potentially effective components. A total of 344 Calculus Bovis compound targets and 590 ischemic stroke targets were found with 92 overlapping targets, including hub genes such as TP53, AKT, PIK2CA, MAPK3, MMP9, and MMP2. Biological functions of Calculus Bovis are associated with protein hydrolyzation, phosphorylation of serine/threonine residues of protein substrates, peptide bond hydrolyzation of peptides and proteins, hydrolyzation of intracellular second messengers, antioxidation and reduction, RNA transcription, and other biological processes. Conclusion. Calculus Bovis may play a role in ischemic stroke by activating PI3K-AKT and MAPK signaling pathways, which are involved in regulating inflammatory response, cell apoptosis, and proliferation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huimin Jiang ◽  
Cheng Hu ◽  
Meijuan Chen

Amid the establishment and optimization of Connectivity Map (CMAP), the functional relationships among drugs, genes, and diseases are further explored. This biological database has been widely used to identify drugs with common mechanisms, repurpose existing drugs, discover the molecular mechanisms of unknown drugs, and find potential drugs for some diseases. Research on traditional Chinese medicine (TCM) has entered a new era in the wake of the development of bioinformatics and other subjects including network pharmacology, proteomics, metabolomics, herbgenomics, and so on. TCM gradually conforms to modern science, but there is still a torrent of limitations. In recent years, CMAP has shown its distinct advantages in the study of the components of TCM and the synergetic mechanism of TCM formulas; hence, the combination of them is inevitable.


2021 ◽  
Vol 16 ◽  
Author(s):  
Xiaolei Ma ◽  
Yinan Lu ◽  
Yang Lu ◽  
Zhili Pei

Background: Tufuling Qiwei Tangsan (TQTS) is a commonly used Mongolian medicine preparation against psoriasis in China. However, its mechanism of action and molecular targets for the treatment of psoriasis is still unclear. Network pharmacology can reveal the synergistic mechanism of drugs at the molecular, target and pathway levels, and is suitable for the complex study of traditional Chinese medicine formulations. However, it is rarely involved in the application of Mongolian medicine with the same holistic concept of traditional Chinese medicine. Method: In this paper, the active compounds of TQTS were collected and their targets were identified. Psoriasis-related targets were obtained by analyzing the differential expressed genes between psoriasis patients and healthy individuals. Then, the network concerning the interactions of potential targets of TQTS with well-known psoriasis-related targets was built. The core targets were selected according to topological parameters. And the enrichment analysis was carried out to explore the mechanism of action of TQTS. Moreover, molecular docking was performed to study the interaction between the selected ligands and receptors related to psoriasis. Result and Conclusion: Eighty-five active compounds of TQTS were screened, with corresponding 270 targets, and 313 differentially expressed genes were identified. Additionally, enrichment analysis showed that the targets of TQTS for treating psoriasis were mainly concentrated in multiple biological processes, including apoptosis, growth factor response,etc., and related pathways including PI3K-Akt and MAPK signaling pathway, and so on. Genes such as NFKB1, TP53 and MAPK1 are the key genes in the gene pathway network of TQTS against psoriasis. The 4 main active components of TQTS have certain binding activity with 13 potential targets, and the stability of interaction with AKT1 is the best, which indicate the potential mechanism of TQTS on psoriasis.


2020 ◽  
Author(s):  
Yuxuan Zhou

Abstract Background: Traditional Chinese medicine (TCM) can treat diseases through its “multi-component, multi-target, multi-pathway” mechanisms. Especially have advantages in the treatment of diseases with complicated pathogenesis, such as Alzheimer’s disease (AD). Tonifying the kidney and strengthening the spleen is one of the common methods of Chinese Medicine to treat AD. The TCM combination of Epimrdii Herba and Coicis Semen can be used as the main drugs of a prescription for tonifying the kidney and strengthening the spleen. However, the mechanisms for Epimrdii Herba-Coicis Semen (EH-CS) to treat AD is vague. The purpose of this study was to explore the mechanisms of EH-CS on AD using a network pharmacological method.Methods: We retrieved the chemical compounds and targets of Epimrdii Herba-Coicis Semen from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). We screened the active ingredients based on the pharmacokinetic parameters (ADME). The Human Gene Database (GeenCards) was used to obtain disease targets of Alzheimer’s disease. Then we drew a venn diagram to obtain common targets of Chinese medicine and disease. Based on the topological properties, we screened the key targets. The protein-protein interaction (PPI) network was constructed using the STRING database, and the "Traditional Chinese Medicine-active ingredient-target" network was constructed using Cytoscape software. The key targets were respectively uploaded to the Metascape and DAVID database for GO and KEGG pathway analysis.Results: We obtained 31 active compounds for EH-CS. Flavonoids play important roles in the treatment of AD. A total of 29 key targets, including AKT1, MAPK1, and TP53, etc. The biological processes involve response to lipopolysaccharide, neuron death, neuroinflammatory response, etc. The main pathways include TNF signaling pathways, MAPK signaling pathways, PI3K-Akt signaling pathways and other signaling pathways.Conclusion: The network pharmacology method is an effective tool for exploring the mechanisms of TCM. Based on network pharmacology, this study systematically explained the potential mechanisms of EH-CS on AD. It provides a valuable reference for the development of AD drugs.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jun-feng Liu ◽  
An-na Hu ◽  
Jun-feng Zan ◽  
Ping Wang ◽  
Qiu-yun You ◽  
...  

Objective. To explore the mechanisms of the volatiles of Wendan granule (WDG) for the treatment of Alzheimer’s disease, network pharmacology method integrating absorption, distribution, metabolism, and excretion (ADME) screening, target fishing, network constructing, pathway analysing, and correlated diseases prediction was applied. Methods. Twelve small molecular compounds of WDG were selected as the objects from 74 volatiles with the relative abundances above 2 %, and their ADME parameters were collected from Traditional Chinese Medicine Systems Pharmacology platform (TCMSP), and the corresponding targets, genes, pathways, and diseases were predicted according to the data provided by TCMSP, DrugBank, Uniport, and the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Then the related pathways and correlation analysis were explored by the Kyoto Encyclopedia and Genomes (KEGG) database. Finally, the networks of compound target, target pathway, and pathway disease of WDG were constructed by Cytoscape software. Results. Twelve compounds interacted with 49 targets, of which top three targets were gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1), prostaglandin G/H synthase 2 (PGHS-2), and sodium-dependent noradrenaline transporter. Interestingly, these targets were highly associated with depression, insomnia, and Alzheimer’s disease that mainly corresponded to mental and emotional illnesses. Conclusion. The integrated network pharmacology method provides precise probe to illuminate the molecular mechanisms of the main volatiles of WDG for relieving senile dementia related syndromes, which will also facilitate the application of traditional Chinese medicine as an alternative or supplementary to conventional treatments of AD, as well as follow-up studies such as upgrading the quality standard of clinically applied herbal medicine and novel drug development.


Sign in / Sign up

Export Citation Format

Share Document