scholarly journals Enhanced UV Direct Photolysis And UV/H2O2 For Oxidation of Triclosan And Ibuprofen In Synthetic Effluent: An Experimental Study

Author(s):  
Vilson Conrado da Luz ◽  
Suzana Fatima Bazoti ◽  
Laura Behling ◽  
Clarissa Dalla Rosa ◽  
Gean Delise Leal Pasquali

Abstract This study aimed to evaluate the implementation of an advanced oxidation system based on UV radiation and UV/H2O2 for degradation of TCS and IBU in synthetic effluent. The assays occurred in a 2L reactor, protected from external light and equipped with a UV lamp (λ = 254nm). The effect of contaminant concentration, fractions of chemical species present, and mineralization were evaluated. In the UV/ H2O2 system, different concentrations of H2O2 were studied for oxidation of the contaminants. The kinetic experiments took place between 75 - 270 min of UV irradiation. The results showed > 99% oxidation of TCS in the direct photolysis system at pH 9.4 after 12 min. The degradation of IBU in the UV/H2O2 system, when 10mg L-1 of H2O2 was used, obtained 97.39% oxidation. We obtained k' values of 0.189 min-1 for TCS when its highest oxidation occurred, and k' values of 0.0219 min-1 for IBU. The system was not able to completely mineralize the contaminants, presenting high values of TOC and COD after treatment, thus suggesting the occurrence of phototransformation.

2020 ◽  
Vol 04 ◽  
Author(s):  
Vigen G. Barkhudaryan ◽  
Gayane V. Ananyan ◽  
Nelli H. Karapetyan

Background: The processes of destruction and crosslinking of macromolecules occur simultaneously under the influence of ultraviolet (UV) radiation in synthetic polymers, dry DNA and their concentrated solutions. Objective: The effect of UV radiation on calf thymus DNA in dilute solutions subjected to UV- irradiation was studied in this work. Method: The calf thymus DNA was studied in dilute solutions using viscometry, absorption spectroscopy and electrophoresis. Results: It was shown, that at a low concentration of DNA in the buffer solution ([DNA] = 85 μg / ml) under the influence of UV radiation, the processes of destruction of macromolecules and an increase in their flexibility predominate, which is accompanied by a gradual decrease in the viscosity of their solution. In addition, due to the low concentration of the solution, intramolecular crosslinking of macromolecules predominates, which also reduces their size and, consequently, the viscosity of the solution. Conclusion: It was concluded, that in dilute DNA solutions, due to the predominance of the processes of intramolecular crosslinking of macromolecules over intermolecular, only constant processes of decreasing the sizes of DNA macromolecules occur. As a result, its solubility remains virtually unchanged during UV irradiation. The described comments are also excellently confirmed by the results of absorption spectroscopy and electrophoresis


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Wasim Asghar ◽  
Ishtiaq A. Qazi ◽  
Hassan Ilyas ◽  
Aftab Ahmad Khan ◽  
M. Ali Awan ◽  
...  

Comparative photocatalytic degradation of polythene films was investigated with undoped and metal (Fe, Ag, and Fe/Ag mix) doped TiO2nanoparticles under three different conditions such as UV radiation, artificial light, and darkness. Prepared photocatalysts were characterized by XRD, SEM, and EDS techniques. Photocatalytic degradation of the polythene films was determined by monitoring their weight reduction, SEM analysis, and FTIR spectroscopy. Weight of PE films steadily decreased and led to maximum of 14.34% reduction under UV irradiation with Fe/Ag mix doped TiO2nanoparticles and maximum of 14.28% reduction under artificial light with Ag doped TiO2nanoparticles in 300 hrs. No weight reduction was observed under darkness. Results reveal that polythene-TiO2compositing with metal doping has the potential to degrade the polythene waste under irradiation without any pollution.


2001 ◽  
Vol 44 (5) ◽  
pp. 53-60 ◽  
Author(s):  
C.A. Martín ◽  
O.M. Alfano ◽  
A.E. Cassano

Sometimes, provision of water for domiciliary consumption faces the problem of natural contamination originated by the presence of organic substances such as humic or fulvic acids. Very often, after conventional sanitary treatments this water exhibits a persistent yellowish coloration that affects its use. Moreover, these substances may act as precursors of tri-halomethanes formation during pre-desinfection with chlorine. This paper presents, with a simplified mechanistic approach, the intrinsic reaction kinetics of natural water decolorization employing UV radiation and hydrogen peroxide. The main variables for the model are: contaminant concentration expressed as TOC, hydrogen peroxide concentration and the photon absorption rate.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 217
Author(s):  
Ladislav Dzurenda ◽  
Michal Dudiak ◽  
Eva Výbohová

The wood of maple (Acer Pseudopatanus L.) was steamed with a saturated steam-air mixture at a temperature of t = 95 °C or saturated steam at t = 115 °C and t = 135 °C, in order to give a pale pink-brown, pale brown, and brown-red color. Subsequently, samples of unsteamed and steamed maple wood were irradiated with a UV lamp in a Xenotest Q-SUN Xe-3-H after drying, in order to test the color stability of steamed maple wood. The color change of the wood surface was evaluated by means of measured values on the coordinates of the color space CIE L* a* b*. The results show that the surface of unsteamed maple wood changes color markedly under the influence of UV radiation than the surface of steamed maple wood. The greater the darkening and browning color of the maple wood by steaming, the smaller the changes in the values at the coordinates L*, a*, b* of the steamed maple wood caused by UV radiation. The positive effect of steaming on UV resistance is evidenced by the decrease in the overall color difference ∆E*. While the value of the total color diffusion of unsteamed maple wood induced by UV radiation is ∆E* = 18.5, for maple wood steamed with a saturated steam-air mixture at temperature t = 95 °C the ∆E* decreases to 12.6, for steamed maple wood with saturated water steam with temperature t = 115 °C the ∆E* decreases to 10.4, and for saturated water steam with temperature t = 135 °C the ∆E* decreases to 7.2. Differential ATR-FTIR spectra declare the effect of UV radiation on unsteamed and steamed maple wood and confirm the higher color stability of steamed maple wood.


2017 ◽  
pp. 147
Author(s):  
Naser Jamshidi ◽  
Farzad Nezhad Bahadori ◽  
Ladan Talebiazar ◽  
Ali Akbar Azimi

Today, advanced oxidation processes (AOPs) is considered as a key and effective method for environment preservation from pollutions. In this study , advanced photochemical oxidation processes using O3/H2O2 and O3/H2O2/UV systems were investigated batch photolytic reactor in lab-scale for the degradation of bisphenol A (BPA). In ozone generator source, air, as of the initial instrument feed, changes to ozone after electrical action and reaction. The UV irradiation source was a medium-pressure mercury lamp 300 W that was immerse in the wastewater solution with in 1.5 liter volume reactor. The reaction was influenced by the pH, the input concentration of H2O2, the input concentration of BPA, ozone dosage, chemical oxidation demand (COD) and UV irradiation time. Results showed that at initial bisphenol A concentration of 100 mg/l will completely degrade after 60 minutes by using O3/H2O2 in the pH range from 9.8 to 10 and by adding UV, it will happen in less than 36 minutes in the pH range of 3 to 10. The O3/H2O2/UV process reduced COD to 75 percents.


BioResources ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. 6963-6969
Author(s):  
Higor Rogerio Favarim ◽  
Lucas Oliveira Leite

The aim of this paper was to investigate the influence of zinc oxide (ZnO) nanoparticles on the resistance of pine wood to fire and ultraviolet (UV) radiation. The ZnO nanoparticles were prepared from aqueous zinc nitrate via a proteic sol-gel method. Dried samples were impregnated using immersion in an aqueous solution of ZnO nanoparticles in the amount of 1 wt.% wood. Samples were exposed to an open flame to test the fire retardance, and a high-pressure UV lamp was used to test the UV resistance. The results showed an improvement in the fire retardance and UV radiation resistance after the impregnation of ZnO nanoparticles.


1988 ◽  
Vol 8 (6) ◽  
pp. 2428-2434
Author(s):  
J M Treger ◽  
J Hauser ◽  
K Dixon

Irradiation of simian virus 40 (SV40)-infected cells with low fluences of UV light (20 to 60 J/m2, inducing one to three pyrimidine dimers per SV40 genome) causes a dramatic inhibition of viral DNA replication. However, treatment of cells with UV radiation (20 J/m2) before infection with SV40 virus enhances the replication of UV-damaged viral DNA. To investigate the mechanism of this enhancement of replication, we analyzed the kinetics of synthesis and interconversion of viral replicative intermediates synthesized after UV irradiation of SV40-infected cells that had been pretreated with UV radiation. This enhancement did not appear to be due to an expansion of the size of the pool of replicative intermediates after irradiation of pretreated infected cells; the kinetics of incorporation of labeled thymidine into replicative intermediates were very similar after irradiation of infected control and pretreated cells. The major products of replication of SV40 DNA after UV irradiation at the low UV fluences used here were form II molecules with single-stranded gaps (relaxed circular intermediates). There did not appear to be a change in the proportion of these molecules synthesized when cells were pretreated with UV radiation. Thus, it is unlikely that a substantial amount of DNA synthesis occurs past pyrimidine dimers without leaving gaps. This conclusion is supported by the observation that the proportion of newly synthesized SV40 form I molecules that contain pyrimidine dimers was not increased in pretreated cells. Pulse-chase experiments suggested that there is a more efficient conversion of replicative intermediates into form I molecules in pretreated cells. This could be due to more efficient gap filling in relaxed circular intermediate molecules or to the release of blocked replication forks. Alternatively, the enhanced replication observed here may be due to an increase in the excision repair capacity of the pretreated cells.


2020 ◽  
Vol 20 ◽  
pp. 101147
Author(s):  
Takahiro Fujioka ◽  
Hitoshi Kodamatani ◽  
Takumi Yoshikawa ◽  
Daisuke Inoue ◽  
Keisuke Ikehata

Sign in / Sign up

Export Citation Format

Share Document