Enhancing disinfection by advanced oxidation under UV irradiation in polyphosphate-containing wastewater flocs

2014 ◽  
Vol 54 ◽  
pp. 179-187 ◽  
Author(s):  
Y. Azimi ◽  
D.G. Allen ◽  
R.R. Farnood
2017 ◽  
pp. 147
Author(s):  
Naser Jamshidi ◽  
Farzad Nezhad Bahadori ◽  
Ladan Talebiazar ◽  
Ali Akbar Azimi

Today, advanced oxidation processes (AOPs) is considered as a key and effective method for environment preservation from pollutions. In this study , advanced photochemical oxidation processes using O3/H2O2 and O3/H2O2/UV systems were investigated batch photolytic reactor in lab-scale for the degradation of bisphenol A (BPA). In ozone generator source, air, as of the initial instrument feed, changes to ozone after electrical action and reaction. The UV irradiation source was a medium-pressure mercury lamp 300 W that was immerse in the wastewater solution with in 1.5 liter volume reactor. The reaction was influenced by the pH, the input concentration of H2O2, the input concentration of BPA, ozone dosage, chemical oxidation demand (COD) and UV irradiation time. Results showed that at initial bisphenol A concentration of 100 mg/l will completely degrade after 60 minutes by using O3/H2O2 in the pH range from 9.8 to 10 and by adding UV, it will happen in less than 36 minutes in the pH range of 3 to 10. The O3/H2O2/UV process reduced COD to 75 percents.


2018 ◽  
Vol 20 (2) ◽  
pp. 399-407 ◽  

Presence of antibiotics in the environment specially in aqueous environments is considered a major warning about health and environment. Thus, this study aims the efficiency of coupled process of Activated Carbon (AC) prepared from mango seed+ZnO under UV irradiation as an advanced oxidation process in removing cefazolin antibiotic from aqueous solutions. This experimental study was carried out in a discontinuous reaction chamber with volume of one liter. In this process, the effect of initial pH parameters of the environment (3– 9), initial concentration of cefazolin (20 – 200 mg/L), concentration of modified, photocatalyzer (20 – 100 mg/L) and reaction time (10 – 60 min) were studied. The pilot used consisted of a low pressure mercury lamp with a 55-watt beam radiation power inside the steel chamber. The kinetic of the process was studied based on pseudo first order kinetics. Results showed that the highest removal efficiency of cefazolin antibiotics in the reaction of UV/AC + ZnO, at optimal conditions of pH= 3, contact time of 60 min, initial concentration of 100 mg/L and modified photocatalyzer of 0.1 g/L was equal to 96%. The kinetic model determined for the process followed kinetic model of pseudo- first order kinetics with high correlation of (R2 = 0.99). Results of present study revealed that photocatalyzer process of nanoparticles oxidation on synthetic activated carbon can be effectively used as an advanced oxidation reaction to remove cefazolin and similar pollutants.


2019 ◽  
Vol 26 (3) ◽  
pp. 571-581 ◽  
Author(s):  
Edyta Kudlek

Abstract Advanced oxidation processes (AOPs) are considered to be one of the most effective methods for the decomposition of a wide range of hardly-biodegradable organic compounds, including pesticides. The implementation of such processes in the water streams treatment often leads to the formation of decomposition by-products of micropollutants occurring in water. These compounds, even in concentrations of a few ng/dm3, may negatively affect the water quality. Therefore, there is a need for detailed analyses that will allow to identify intermediates found in the AOP solutions and to assess their impact on the aquatic environment. The paper presents an attempt to identify by-products of three pesticides: triclosan, triallat and oxadiazon during ozonation, chlorination and UV irradiation of their water solutions. The identification of compounds was performed based on the results of the GC-MS analysis using the NIST v17 mass spectral library. It has been shown that during all of tested advanced oxidation processes, incomplete degradation of pesticides occurs. The number of micropollutant decomposition by-products increases with the increase of the applied ozone dose and UV exposure time. During the chlorination process Cl− atoms were added to the tested compound molecules. In the case of triclosan, it led to the generation of compounds containing four or five chlorine atoms in their structure. The toxicological analysis performed by the use of the Microtox® and Lemna sp. Growth Inhibition Test showed the toxic nature of post-process solutions. The decomposition by-products of triclosan and triallate, generated during the UV irradiation process, were highly toxic against the test organisms (toxic effect > 75 %). This makes it impossible to drain these solutions into the natural environment.


2001 ◽  
Vol 28 (S1) ◽  
pp. 49-66 ◽  
Author(s):  
H Zhou ◽  
Daniel W Smith

The use of conventional water and wastewater treatment processes becomes increasingly challenged with the identification of more and more contaminants, rapid growth of population and industrial activities, and diminishing availability of water resources. Three emerging treatment technologies, including membrane filtration, advanced oxidation processes (AOPs), and UV irradiation, hold great promise to provide alternatives for better protection of public health and the environment and thus are reviewed in this paper. The emphasis was placed on their basic principles, main applications, and new developments. Advantages and disadvantages of these technologies are compared to highlight their current limitations and future research needs. It can be concluded that, along with the growing knowledge and the advances in manufacturing industry, the applications of these technologies will be increased at an unprecedented scale.Key words: water treatment, wastewater treatment, membrane filtration, ozonation, advanced oxidation processes, UV irradiation.


2015 ◽  
Vol 70 ◽  
pp. 74-85 ◽  
Author(s):  
Asok Adak ◽  
Kiranmayi P. Mangalgiri ◽  
Jessica Lee ◽  
Lee Blaney

Sign in / Sign up

Export Citation Format

Share Document