scholarly journals Purification and Characterization of Polyphenol Oxidase Enzyme from Damson Plum (Prunus insititia) by Spectrophotometrically

Author(s):  
Selinnur Yıldız ◽  
Çiğdem Bilen ◽  
Emine Karakuş

Abstract Polyphenol oxidase enzyme, performing browning reactions in fruits and vegetables, was purificated from damson plum (Prunus insititia) which has a high antioxidant activity. Firstly, partially purified polyphenol oxidase was treated by 0-80% ammonium sulfate precipitation and dialysis, respectively. Characterization studies were carried out by using catechol, 4-methyl catechol, pyrogallol and caffeic acid as 0.05M/ pH:7.2/ 25°C; 0.2M/ pH:4.5/ 10°C; 0.01M/ pH:6.8/ 5°C and 0.2M/ pH:8.5/ 10°C, respectively. The kinetic constants of Vmax and KM were calculated for the same substrates as 17219.97 U/(mL*min) and 11.67mM; 7309.72 U/(mL*min) and 5mM; 12580.12 U/(mL*min) and 3.74mM; 12100.41 U/(mL*min) and 6.25 mM, respectively. Catechol gave the highest Vmax value when compared to others. In the second step, purification was performed by using Sepharose 4B-L-Tyrosine-p-amino benzoic acid and Sepharose 6B-L-Tyrosine-p-amino benzoic acid affinity gels. A single band of approximately as 50-55 kDa was observed in SDS-PAGE and Native-PAGE. 90 and 10.2 purification folds were obtained for Prunus insititia PPO by the reference Sepharose-4B-L-Tyrosine-p-aminobenzoic acid and original Sepharose-6B-L-Tyrosine-p-aminobenzoic acid gels, respectively. PPO enzyme purification from Prunus insititia by affinity chromatography has not been investigated in literature yet.

1969 ◽  
Vol 23 (3) ◽  
pp. 254-256 ◽  
Author(s):  
A. Mustafa ◽  
R. Abu-Eittah ◽  
S. Elgendi

The electronic absorption spectra of some drugs derived from p-amino benzoic acid were studied. The effect of the substituent on the position of band maxima and intensity has been rationalized. Long wavelength energies have been found to agree well with calculated energies of the intramolecular charge transfer bands.


Author(s):  
Leman Yılmaz ◽  
Yeşim Elmacı

Polyphenol oxidase enzyme is found in vegetables and fruits, as well as in some animal organs and microorganisms. Polyphenol oxidase enzyme responsible for enzymatic browning is a group of copper proteins that catalyses the oxidation of phenolic compounds to quinones, which produce brown pigments, commonly found in fruits and vegetables. During the industrial preparation of fruits and vegetables, results of catalytic effect of polyphenol oxidase causes enzymatic browning. Enzymatic browning impairs the appearance of products containing phenolic compounds along with undesirable colour, odor and taste formation and significant loss of nutritional value of the products. This affects the acceptability of the products by the consumers and causes economic losses. In this review, some characteristics of polyphenol oxidase enzyme in different fruits and vegetables have been reviewed and information about chemical antibrowning agents, thermal applications, irradiation applications and alternative methods such as high pressure processing, pulse electric field, supercritical carbon dioxide and ultrasound applications to inactivate this enzyme has been presented.


2005 ◽  
Vol 70 (10) ◽  
pp. 1155-1162 ◽  
Author(s):  
Jigna Parekh ◽  
Pranav Inamdhar ◽  
Rathish Nair ◽  
Shipra Baluja ◽  
Sumitra Chanda

The following Schiff bases have been synthesized: (1) 4-(2-chlorobenzylidene)amino benzoic acid JP1, (2) 4 (furan-2-ylmethylene)amino benzoic acid JP2, (3) 4-[(3-phenylallylidene)amino]benzoic acid JP3, (4) 4 (2-hydroxybenzylidene)amino benzoic acid JP4, (5) 4 (4-hydroxy-3-methoxybenzylidene)amino benzoic acid JP5 and (6) 4 (3-nitrobenzylidene)amino benzoic acid JP6. They were screened as potential antibacterial agents against a number of medically important bacterial strains. The antibacterial activity was studied against A. faecalis ATCC 8750, E. aerogenes ATCC 13048, E. coli ATCC 25922, K. pneumoniae NCIM 2719 S. aureus ATCC 25923, P. vulgaris NCIM 8313, P. aeruginosa ATCC 27853 and S. typhimurium ATCC 23564. The antibacterial activity was evaluated using the Agar Ditch method. The solvents used were 1,4-dioxane and dimethyl sulfoxide. Different effects of the compounds were found in the bacterial strains in vestigated and the solvents used, suggesting, once again, that the antibacterial activity is dependent on the molecular structure of the compound, the solvent used and the bacterial strain under consideration. In the present work, 1,4-dioxane proved to be a good solvent in inhibiting the above stated bacterial strains.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Michelle B. S. Weerawardana ◽  
Gobika Thiripuranathar ◽  
Priyani A. Paranagama

Fresh-cut fruits and vegetables emerge as popular food for consumers in retail markets. However, a loss of millions of dollars yearly to the food industry has been due to discoloration of fruits and vegetables caused by a pronounced reaction called enzymatic browning, which is caused by the activity of the polyphenol oxidase enzyme present in most of the fruits and vegetables. The main objective of this study was to investigate the natural antibrowning effects of the aqueous extract of ginger and essential oil of cinnamon bark on PPO enzymatic activity in Annona muricata (katu anoda) and Musa acuminata (ash plantains), which are considered to be widely consumable by Sri Lankans due to its respective health benefits. The antibrowning activity analyzed using a UV-visible spectrophotometer at a wavelength of 525 nm showed that cinnamon bark oil of 0.0035 g/mL had a % inhibitory activity of 51.97 percent on PPO activity in Annona muricata and 49.51 percent on PPO activity in Musa acuminata, while the aqueous extract of ginger of 0.091 g/mL had a % inhibitory activity of 60.90 percent on PPO activity in Annona muricata and 48.10 percent on PPO activity in Musa acuminata, respectively. This study shows that cinnamon bark oil and ginger can be used as effective, natural, nontoxic antibrowning agents that can inhibit the activity of the PPO enzyme, thereby preventing the essence and nutritional benefits of fruits and vegetables.


Author(s):  
Serap Dogan ◽  
Pinar Turan ◽  
Mehmet Dogan ◽  
Mahir Alkan ◽  
Oktay Arslan

The paper reports the inhibition model of the purified polyphenol oxidase (PPO) activity from basil (Ocimum basilicum L.) with L-cysteine, ethylenediaminetetraacetic acid (EDTA), ascorbic acid, gallic acid, D,L-dithiothreitol, tropolone, glutathione, sodium azide, benzoic acid, salicylic acid and 4-aminobenzoic acid inhibitors using 4-methylcatechol, catechol and pyrogallol as substrates. The inhibitors such as salicylic acid, benzoic acid and EDTA did not inhibit Ocimum basilicum L. PPO for all substrates used in this study. Purification was carried out by precipitation of contaminating proteins with (NH4)2O4 dialysis of the supernatant and a Sepharose 4B-L-tyrosine-p-aminobenzoic acid affinity chromatography. The enzyme-catalysed browning reaction was significantly inhibited in the presence of L-cysteine, ascorbic acid, gallic acid, D,L-dithiothreitol, tropolone, glutathione, sodium azide and 4-aminobenzoic acid inhibitors. It was found that the inhibition types were (i) competitive inhibition for L-cysteine, ascorbic acid, D,L-dithiothreitol, tropolone and sodium azide inhibitors using 4-methylcatechol as a substrate; for L-cysteine, ascorbic acid, gallic acid, tropolone and glutathione inhibitors using catechol as a substrate; and for ascorbic acid inhibitor using pyrogallol as a substrate, (ii) uncompetitive inhibition for gallic acid inhibitor using 4-methylcatechol as a substrate; for 4-aminobenzoic acid inhibitor using catechol as a substrate; for tropolone and 4-aminobenzoic acid inhibitors using pyrogallol as a substrate, (iii) noncompetitive inhibition for 4-aminobenzoic acid inhibitor using 4-methylcatechol as a substrate; for D,L-dithiothreitol and sodium azide inhibitors using catechol as a substrate; and for L-cysteine, glutathione and sodium azide inhibitors using pyrogallol as a substrate. Furthermore, tropolone was the most effective inhibitor for Ocimum basilicum L. PPO because of its low KI value. Results showed that the type of inhibition depended on the origin of the PPO studied and also on the substrate used.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mahmoud A. Ibrahim ◽  
Abdel-Hady M. Ghazy ◽  
Ahmed M. H. Salem ◽  
Mohamed A. Ghazy ◽  
Mohamed M. Abdel-Monsef

Glucose-6-phosphate dehydrogenase from camel liver was purified to homogeneity by ammonium sulfate precipitation and a combination of DEAE-cellulose, Sephacryl S-300 gel filtration, and 2′, 5′ ADP Sepharose 4B affinity chromatography columns. The specific activity of camel liver G6PD is increased to 1.80438 units/mg proteins with 63-fold purification. It turned out to be homogenous on both native PAGE and 12% SDS PAGE, with a molecular weight of 64 kDa. The molecular weight of the native form of camel liver G6PD was determined to be 194 kDa by gel filtration indicating a trimeric protein. The Km value was found to be 0.081 mM of NADP+. Camel liver G6PD displayed its optimum activity at pH 7.8 with an isoelectric point (pI) of pH 6.6–6.8. The divalent cations MgCl2, MnCl2, and CoCl2 act as activators; on the other hand, CaCl2 and NiCl2 act as moderate inhibitors, while FeCl2, CuCl2, and ZnCl2 are potent inhibitors of camel liver G6PD activity. NADPH inhibited camel liver G6PD competitively with Ki value of 0.035 mM. One binding site was deduced for NADPH on the enzyme molecule. This study presents a simple and reproducible purification procedure of G6PD from the camel liver.


2003 ◽  
Vol 44 (39) ◽  
pp. 7369-7372 ◽  
Author(s):  
M.H.V.Ramana Rao ◽  
S.Kiran Kumar ◽  
A.C. Kunwar

Sign in / Sign up

Export Citation Format

Share Document