scholarly journals Biochemical and Instrumental Characterization of Vermicompost Produced From Patchouli Bagasse: A Waste by-product of Essential Oil Industries

Author(s):  
Refad Ahmed ◽  
Hemen Deka

Abstract Biochemical and instrumental analysis was carried out for understanding the maturity and stability of the vermicomposted patchouli bagasse (PB) and cow dung (CD) mixtures. Two important enzymes namely urease and dehydrogenase were evaluated to understand the biological changes. On the other hand, instrumental study includes scanning electron microscopy (SEM) imaging; X-ray diffraction (XRD) pattern and UV-VIS spectrophotometer analysis of the vermicomposting end products. The results showed enhancement in urease (1.14-2.84 folds) and dehydrogenase (1.7-3.1 folds) activities confirming the maturity and stability of the vermicomposting end products. The spectrophotometric analysis revealed that there was significant decrease in humification index (1.5 to 3.4 folds) in the vermicompost samples than the initial level. The SEM images depicted the porous, fragmented and granular structure of end vermicompost samples. Further, the XRD analysis showed the micromorphological crystalline structure and enhanced decomposition of the substrate mixture during vermicomposting process. As a whole, the end vermicompost product was found to be much stable and mature for agronomic use.

2012 ◽  
Vol 581-582 ◽  
pp. 525-528
Author(s):  
Jia Feng Zhang ◽  
Bao Zhang ◽  
Xue Yi Guo ◽  
He Zhang Chen ◽  
Jian Long Wang ◽  
...  

The LiFe0.98Mn0.02PO4/C was synthesized by spray-drying and low temperature reduction route using FePO4•2H2O as precursor, which was prepared by a simple co-precipitation method. The LiFe0.98Mn0.02PO4/C sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical measurements. The XRD analysis and SEM images show that sample has the good ordered structure and spherical particle. The charge-discharge tests demonstrate that the powder has the better electrochemical properties, with an initial discharge capacity of 162.1 mAh•g−1 and 155.8 mAh•g−1 at current density of 0.1 C and 1C, respectively. The capacity retention reaches 99.4% after 100 cycles at 1C.


2016 ◽  
Vol 34 (3) ◽  
pp. 597-604 ◽  
Author(s):  
Shams Ali Baig ◽  
Zimo Lou ◽  
Malik T. Hayat ◽  
Ruiqi Fu ◽  
Yu Liu ◽  
...  

AbstractCalcination is considered to increase the hardness of composite material and prevent its breakage for the effective applications in environmental remediation. In this study, magnetic biochar amended with silicon dioxide was calcined at high temperature under nitrogen environment and characterized using various techniques. X-ray diffraction (XRD) analysis revealed elimination of Fe3O4 peaks under nitrogen calcination and formation of Fe3Si and iron as major constituents of magnetic biochar-SiO2 composite, which demonstrated its superparamagnetic behavior (>80 A2·kg−1) comparable to magnetic biochar. Thermogravimetric analysis (TGA) revealed that both calcined samples generated higher residual mass (>96 %) and demonstrated better thermal stability. The presence of various bands in Fourier transform infrared spectroscopy (FT-IR) was more obvious and the elimination of H–O–H bonding was observed at high temperature calcination. In addition, scanning electron microscopy (SEM) images revealed certain morphological variation among the samples and the presence of more prominent internal and external pores, which then judged the surface area and pore volume of samples. Findings from this study suggests that the selective calcination process could cause useful changes in the material composites and can be effectively employed in environmental remediation measures.


2018 ◽  
Vol 766 ◽  
pp. 217-222
Author(s):  
Suphaporn Daothong

Iron oxide nanowires were synthesized on stainless steel mesh substrate using the thermal oxidation process at the varying temperature of 750°C for 60 min. The samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD pattern showed that the iron oxide nanowires exhibited the structure of alpha-Fe2O3 (hematite). SEM images indicated that the diameter and the length of the nanowires were 80 to 285 nm and more than 5 μm, respectively. The dye-sensitized solar cell (DSC) properties based on the nanowires substrate was also studied. It was found that the power conversion efficiency (η) of the device was 0.11%.


Bismuth layer-structured piezoelectric (BLSP) calcium bismuth titanate (Ca0.25Bi0.5TiO3) piezoelectric ceramics have been prepared via a conventional sol gel reaction method by mixing the desired chemicals in stoichiometric amounts. Calcium bismuth titanate (CBT) samples were characterized by means of XRD, SEM and FTIR spectroscopy. X-ray diffraction (XRD) analysis revealed that CBT ceramics exhibit a single phase orthorhombic structure. The SEM images confirm its morphological size ranging from 1.00 to 2.75 µm. FTIR analysis reveals that calcium bismuth titanate has been prepared successfully, and the ratio of calcium, bismuth and titania was found to be 0.25:0.50:1.00, respectively. The photocatalytic removal of Methylene Blue, cadmium (Cd2+) and other toxic heavy metals will be carried out using CBT materials.


2011 ◽  
Vol 55-57 ◽  
pp. 1584-1587 ◽  
Author(s):  
Li Mei Wang

Polypropylene(PP)/clay nanocomposites were prepared by solution blending. The microstructure of PP/clay nanocomposites was studied by wide-angle X-ray diffraction (XRD) analysis. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to investigate thermal properties of PP/clay nanocomposites. XRD pattern prove that clay layers were exfoliated into nanometer size in PP matrix and that α-Phase crystallite was the main crystallite of PP in PP/clay nanocomposites. TGA examinations confirmed that the maximum decomposition temperature of PP/clay nanocomposites was higher than that of neat PP and that the thermal stability of PP/clay nanocomposites rose noticeably. Results of DSC scans showed the crystalliztion temperature of nanocomposites was slightly bigger than that of pure PP due to the efficient nucleating effects of clay layers.


2021 ◽  
Vol 328 ◽  
pp. 01002
Author(s):  
Deasy Liestianty ◽  
Muliadi ◽  
Marhan ◽  
Said Hi Abbas ◽  
Yanny

Characterization and identification of Maitara Island clay have been carried out. This study aims to determine the types of minerals contained in the Maitara Island clay. The analytical methods used include X-Ray Fluorescence (XRF) to determine the chemical composition of Maitara Island clay, X-Ray Diffraction (XRD) for mineralogical analysis of Maitara Island clay, Fourier Transmission Infra Red (FTIR) to determine the types of vibrations that exist between the atoms in clay minerals from Maitara Island, and Scanning Electron Microscopy (SEM) to determine the morphology of clay minerals. XRF analysis showed that silica was the element found to dominate the clay minerals with a percentage of 40.79%. Moreover, the highest oxide component found was SiO2 with a percentage of 87.25%. XRD analysis indicated that the Maitara Island clay minerals are composed of montmorillonite, magmatite, aluminum oxide colondrum, cristobalite, lime, titanium oxide, and hematite. The results of FTIR analysis denoted the presence of silica as silanol and siloxane. SEM images showed angular grains which signified silica as the main component in the clay minerals of Maitara Island


2019 ◽  
Vol 60 ◽  
pp. 142-153
Author(s):  
Bassam Abdallah ◽  
M. Kakhia ◽  
N. Alkafri

Pb doped ZnS nanotubes films have been deposited on glass and Si (100) substrates by a thermal evaporation technique. Energy dispersive spectroscopy (EDX) analysis has been used to identify the element’s compositions. Pb concentration in the prepared films was increased from 0 to about ~6 wt. %. The X- Ray Diffraction (XRD) pattern exhibited the wurtzite structure of ZnS with (002) preferred orientation. It shows that the calculated grain size increased with increase in Pb concentration. XRD analysis was also used to determine the strain in the films. Morphology and thickness of the films were obtained from surface and cross section of the films, using scanning electron microscopy (SEM) images. SEM images have confirmed the ZnS nanotubes and modifications of the morphology when adding Pb. Atomic force microscope (AFM) and SEM characterization have been shown dense structure and demonstrated the growth of spherical forms with nanostructure (nanotubes not created) for a film deposited without doping (0 wt. %). The transparency of the films has been deduced from UV-Vis spectra, where the band gap increased with increase in Pb concentration


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 931
Author(s):  
Ioana-Codruţa Mirică ◽  
Gabriel Furtos ◽  
Ondine Lucaciu ◽  
Petru Pascuta ◽  
Mihaela Vlassa ◽  
...  

The aim of this research was to develop new electrospun membranes (EMs) based on polycaprolactone (PCL) with or without metronidazole (MET)/nano-hydroxyapatite (nHAP) content. New nHAP with a mean diameter of 34 nm in length was synthesized. X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) were used for structural characterization of precursors and EMs. The highest mechanical properties (the force at maximum load, Young’s modulus and tensile strength) were found for the PCL membranes, and these properties decreased for the other samples in the following order: 95% PCL + 5% nHAP > 80% PCL + 20% MET > 75% PCL + 5% nHAP + 20% MET. The stiffness increased with the addition of 5 wt.% nHAP. The SEM images of EMs showed randomly oriented bead-free fibers that generated a porous structure with interconnected macropores. The fiber diameter showed values between 2 and 16 µm. The fiber diameter increased with the addition of nHAP filler and decreased when MET was added. New EMs with nHAP and MET could be promising materials for guided bone regeneration or tissue engineering.


2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


Sign in / Sign up

Export Citation Format

Share Document