scholarly journals Characterization of magnetic biochar amended with silicon dioxide prepared at high temperature calcination

2016 ◽  
Vol 34 (3) ◽  
pp. 597-604 ◽  
Author(s):  
Shams Ali Baig ◽  
Zimo Lou ◽  
Malik T. Hayat ◽  
Ruiqi Fu ◽  
Yu Liu ◽  
...  

AbstractCalcination is considered to increase the hardness of composite material and prevent its breakage for the effective applications in environmental remediation. In this study, magnetic biochar amended with silicon dioxide was calcined at high temperature under nitrogen environment and characterized using various techniques. X-ray diffraction (XRD) analysis revealed elimination of Fe3O4 peaks under nitrogen calcination and formation of Fe3Si and iron as major constituents of magnetic biochar-SiO2 composite, which demonstrated its superparamagnetic behavior (>80 A2·kg−1) comparable to magnetic biochar. Thermogravimetric analysis (TGA) revealed that both calcined samples generated higher residual mass (>96 %) and demonstrated better thermal stability. The presence of various bands in Fourier transform infrared spectroscopy (FT-IR) was more obvious and the elimination of H–O–H bonding was observed at high temperature calcination. In addition, scanning electron microscopy (SEM) images revealed certain morphological variation among the samples and the presence of more prominent internal and external pores, which then judged the surface area and pore volume of samples. Findings from this study suggests that the selective calcination process could cause useful changes in the material composites and can be effectively employed in environmental remediation measures.

2011 ◽  
Vol 332-334 ◽  
pp. 317-320 ◽  
Author(s):  
Hui Qin Zhang

In this study, composite nanofibers of polyaniline doped with dodecylbenzene sulfonic acid (PANI-DBSA) and Poly(lactic acid) (PLA) were prepared via an electrospinning process. The surface morphology, thermal properties and crystal structure of PLA/PANI-DBSA nanofibers are characterized using Fourier transform infrared spectroscopy (FT-IR), wide-angle x-ray diffraction (WAXD) and scanning electron microscopy (SEM). SEM images showed that the morphology and diameter of the nanofibers were affected by the weight ratio of blend solution.


2012 ◽  
Vol 581-582 ◽  
pp. 525-528
Author(s):  
Jia Feng Zhang ◽  
Bao Zhang ◽  
Xue Yi Guo ◽  
He Zhang Chen ◽  
Jian Long Wang ◽  
...  

The LiFe0.98Mn0.02PO4/C was synthesized by spray-drying and low temperature reduction route using FePO4•2H2O as precursor, which was prepared by a simple co-precipitation method. The LiFe0.98Mn0.02PO4/C sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical measurements. The XRD analysis and SEM images show that sample has the good ordered structure and spherical particle. The charge-discharge tests demonstrate that the powder has the better electrochemical properties, with an initial discharge capacity of 162.1 mAh•g−1 and 155.8 mAh•g−1 at current density of 0.1 C and 1C, respectively. The capacity retention reaches 99.4% after 100 cycles at 1C.


2016 ◽  
Vol 34 (2) ◽  
pp. 330-336 ◽  
Author(s):  
A.V. Ramya ◽  
Anu N. Mohan ◽  
B. Manoj

AbstractWrinkled graphene, derived from a facile thermal decomposition and chemical method, was subjected to various analysis techniques and the results have been reported here. Raman studies revealed the presence of highly graphitized amorphous carbon, which was evident by the appearance of five peaks in the deconvoluted first order spectrum. This result was very well corroborated by the XRD analysis. XPS and FT-IR spectra confirmed the incorporation of oxygen functionalities into the carbon backbone. AFM and SEM images of the sample disclosed a cluster of few-layer wrinkled graphene fragments. TEM images displayed a chain of nearly spherical aggregates of graphene, resembling nanohorns. The resistivity and sheet resistance of the sample were found to be low, making the obtained material a promising candidate for various device applications. Hence, kerosene soot proved to be an efficient precursor for facile synthesis of few layer graphene-like nanocarbon.


Bismuth layer-structured piezoelectric (BLSP) calcium bismuth titanate (Ca0.25Bi0.5TiO3) piezoelectric ceramics have been prepared via a conventional sol gel reaction method by mixing the desired chemicals in stoichiometric amounts. Calcium bismuth titanate (CBT) samples were characterized by means of XRD, SEM and FTIR spectroscopy. X-ray diffraction (XRD) analysis revealed that CBT ceramics exhibit a single phase orthorhombic structure. The SEM images confirm its morphological size ranging from 1.00 to 2.75 µm. FTIR analysis reveals that calcium bismuth titanate has been prepared successfully, and the ratio of calcium, bismuth and titania was found to be 0.25:0.50:1.00, respectively. The photocatalytic removal of Methylene Blue, cadmium (Cd2+) and other toxic heavy metals will be carried out using CBT materials.


2021 ◽  
Author(s):  
Refad Ahmed ◽  
Hemen Deka

Abstract Biochemical and instrumental analysis was carried out for understanding the maturity and stability of the vermicomposted patchouli bagasse (PB) and cow dung (CD) mixtures. Two important enzymes namely urease and dehydrogenase were evaluated to understand the biological changes. On the other hand, instrumental study includes scanning electron microscopy (SEM) imaging; X-ray diffraction (XRD) pattern and UV-VIS spectrophotometer analysis of the vermicomposting end products. The results showed enhancement in urease (1.14-2.84 folds) and dehydrogenase (1.7-3.1 folds) activities confirming the maturity and stability of the vermicomposting end products. The spectrophotometric analysis revealed that there was significant decrease in humification index (1.5 to 3.4 folds) in the vermicompost samples than the initial level. The SEM images depicted the porous, fragmented and granular structure of end vermicompost samples. Further, the XRD analysis showed the micromorphological crystalline structure and enhanced decomposition of the substrate mixture during vermicomposting process. As a whole, the end vermicompost product was found to be much stable and mature for agronomic use.


2020 ◽  
Vol 2 (1) ◽  
pp. 6
Author(s):  
Ognian Dimitrov ◽  
Irina Stambolova ◽  
Sasho Vassilev ◽  
Katerina Lazarova ◽  
Tsvetanka Babeva ◽  
...  

Thin, homogeneous ZrO2 films were obtained by spin coating method from ZrOCl2 8H2O solution, modified with polyethylene glycol (PEG) (Mw = 400). The films have thickness of 80 nm and refractive index of about 1.45, which varied with the amount of added PEG. The thermal behaviour of the precursor was studied with thermogravimetry and differential thermal analysis (TG-DTA). The X-ray diffraction (XRD) analysis revealed the presence of a mixture of monoclinic and tetragonal ZrO2 polycrystalline phases with nanosized crystallites. The formation of hydrogen bonds among the organic and inorganic components was proved by means of Fourier transform infrared spectroscopy (FT-IR) analysis, while the different defect centres were investigated with electron paramagnetic resonance (EPR) spectroscopy. The scanning electron microscopy (SEM) images showed that the samples are dense and crack-free, with ganglia-like nanostructure. It was established that the addition of polymer resulted in the introduction of free volume in the films, which also varied with the content of PEG in the precursor solution.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hao Ding ◽  
Yuebo Wang ◽  
Yu Liang ◽  
Faxiang Qin

Intercalated sericite was prepared by intercalation of cetyl trimethylammonium bromide (CTAB) into activated sericite through ion exchange with the following two steps: the activation of sericite by thermal modification, acid activation and sodium modification; the ion exchange intercalation of CTA+into activated sericite. Effects of reaction time, reaction temperature, CTAB quantity, kinds of medium, and aqueous pH on the intercalation of activated sericite were examined by X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The results indicated that the CTA+entered sericite interlayers and anchored in the aluminosilicate interlayers through strong electrostatic attraction. The arrangement of CTA+in sericite interlayers was that alkyl chain of CTA+mainly tilted at an angle about 60° (paraffin-type bilayer) and 38° (paraffin-type monolayer) with aluminosilicate layers. The largest interlayer space was enlarged from 0.9 nm to 5.2 nm. The intercalated sericite could be used as an excellent layer silicate to prepare clay-polymer nanocomposites.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012009
Author(s):  
R Nedjai ◽  
N A Kabbashi ◽  
M Z Alam ◽  
M F R Al-Khatib

Abstract Chemical agents have a good influence on the formation of activated carbons, surface characteristic, and its adsorption properties. In this study, the effect of activating agents (ZnCl2, KOH, and H3PO4) on baobab fruit shell (BFS) were evaluated. The characteristics of the baobab fruit shell based activated carbon (BF-ACs) were evaluated through the yield and iodine number. BF-ACs were also characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), and nitrogen (N2) adsorption. SEM analysis illustrates those porous structures formed on the surface of BF-ACs were with different sizes. The XRD analysis show that the main structures of BF-ACs are amorphous. FT-IR data demonstrates the presence of different surface groups on the produced BF-ACs. Among activating agent, the KOH was observed to the most appropriate for the production of activated carbon with a large surface area (1029.44 m2/g) from baobab fruit shell.


2020 ◽  
Vol 990 ◽  
pp. 144-148
Author(s):  
Suphada Srilai ◽  
Worapak Tanwongwal ◽  
Kobchai Onpecth ◽  
Thanapat Wongkitikun ◽  
Kollayut Panpiemrasda ◽  
...  

Zeolite X were successfully synthesized from bentonite from Lopburi province, in Thailand using the two-step of hydrothermal method under optimum condition without calcination. The first step of hydrothermal were obtained at 200 °C for 3 h to remove unreacted impurity minerals such as quartz and muscovite. The secondary step of hydrothermal were obtained at 90 °C for 120 h for synthesis of zeolite X. The characterization of zeolite X were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), and infrared spectroscopy (FT-IR), respectively. The crystal structure of product was determined as zeolite X by XRD. The morphology of SEM images for zeolite X is octahedral shape. FTIR spectra are in accordance with the other characterization results.


2012 ◽  
Vol 624 ◽  
pp. 34-37
Author(s):  
Xiao Yan Zhang ◽  
Wen Shu Hu ◽  
Xi Wei Qi ◽  
Gui Fang Sun ◽  
Jian Quan Qi ◽  
...  

Bi2Al4O9 powders were prepared by sol-gel process. The precursors were heated at 500-800°C for 2h to obtain Bi2Al4O9 powder and X-ray diffraction (XRD), Differential thermal analysis (DTA), thermogravimetric analysis (TG), field emission scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) techniques were used to characterize precursor and derived oxide powders. XRD analysis show that the powder is still amorphous after calcined at 500°C. The peaks of Bi2Al4O9 become sharp after calcined at 575°C though still existing some amorphous phase. After calcining at 675-800°C, the powder has fully turned into pure Bi2Al4O9 phase. The crystallization process can also be confirmed by DTA-TG and IR. Calcining the precursor at 575°C, the absorption bands at 527 cm-1, 738 cm-1, 777 cm-1, and 919 cm-1are observed, which are assigned to Bi2Al4O9 and becoming stronger and sharper with the increase of temperature.


Sign in / Sign up

Export Citation Format

Share Document