scholarly journals Abrupt Temperature Change In Winter Over The Mongolian Plateau For The Past 60 Years

Author(s):  
Yingying Xia ◽  
Xi Chun ◽  
Dan Dan ◽  
Haijun Zhou ◽  
Zhiqiang Wan

Abstract Studying the abrupt temperature change in winter over the Mongolian Plateau (MP) is of great significance for understanding the spatiotemporal distribution of temperature and the mechanism of global climate change. Monthly temperature data of MP were collected during 1961–2017, the abrupt-change point was determined by the Mann–Kendall test and sliding t-test to analyze the characteristics and causes of abrupt temperature change in winter. The results showed that (a) The increase rate of winter temperature was 0.41 ℃/10a, with a contribution rate of 30.7 % to annual temperature change, which was significantly higher than that of mainland China, indicating that climate change in the MP was more sensitive to global warming. (b) The abrupt-change point occurred in 1988, with temperatures of -15.5 ℃ and − 14.1°C before and after 1988, respectively, the increasing range was 9%. The abrupt temperature change in high latitudes was 1–3 years later than that in low latitudes. (c) The isotherms of different temperatures in winter moved northward by 10–200 km, especially − 16°C isotherm moved approximately 200 km northward after 1988, thereby the MP warmed significantly. (d) there was a good coupling relationship between the Arctic Oscillation (AO) and winter temperature. AO affects temperature change by influencing the Mongolia–Siberian High, therefore, it may be an important factor to drive the abrupt temperature change in winter.

Author(s):  
Cynthia Rosenzweig ◽  
Daniel Hillel

The climate system envelops our planet, with swirling fluxes of mass, momentum, and energy through air, water, and land. Its processes are partly regular and partly chaotic. The regularity of diurnal and seasonal fluctuations in these processes is well understood. Recently, there has been significant progress in understanding some of the mechanisms that induce deviations from that regularity in many parts of the globe. These mechanisms include a set of combined oceanic–atmospheric phenomena with quasi-regular manifestations. The largest of these is centered in the Pacific Ocean and is known as the El Niño–Southern Oscillation. The term “oscillation” refers to a shifting pattern of atmospheric pressure gradients that has distinct manifestations in its alternating phases. In the Arctic and North Atlantic regions, the occurrence of somewhat analogous but less regular interactions known as the Arctic Oscillation and its offshoot, the North Atlantic Oscillation, are also being studied. These and other major oscillations influence climate patterns in many parts of the globe. Examples of other large-scale interactive ocean–atmosphere– land processes are the Pacific Decadal Oscillation, the Madden-Julian Oscillation, the Pacific/North American pattern, the Tropical Atlantic Variability, the West Pacific pattern, the Quasi-Biennial Oscillation, and the Indian Ocean Dipole. In this chapter we review the earth’s climate system in general, define climate variability, and describe the processes related to ENSO and the other major systems and their interactions. We then consider the possible connections of the major climate variability systems to anthropogenic global climate change. The climate system consists of a series of fluxes and transformations of energy (radiation, sensible and latent heat, and momentum), as well as transports and changes in the state of matter (air, water, solid matter, and biota) as conveyed and influenced by the atmosphere, the ocean, and the land masses. Acting like a giant engine, this dynamic system is driven by the infusion, transformation, and redistribution of energy.


1999 ◽  
Vol 33 (1) ◽  
pp. 81-84
Author(s):  
Jinro Ukila ◽  
Moloyoshi Ikeda

The Frontier Research System for Global Change—the International Arctic Research Center (Frontier-IARC) is a research program funded by the Frontier Research System for Global Change. The program is jointly run under a cooperative agreement between the Frontier Research System for Global Change and the University of Alaska Fairbanks. The aim of the program is to understand the role of the Arctic region in global climate change. The program concentrates its research effort initially on the areas of air-sea-ice interactions, bio-geochemical processes and the ecosystem. To understand the arctic climate system in the context of global climate change, we focus on mechanisms controlling arctic-subarctic interactions, and identify three key components: the freshwater balance, the energy balance, and the large-scale atmospheric processes. Knowledge of details of these components and their interactions will be gained through long-term monitoring, process studies, and modeling; our focus will be on the latter two categories.


2005 ◽  
Vol 272 (1581) ◽  
pp. 2571-2576 ◽  
Author(s):  
S.J Kutz ◽  
E.P Hoberg ◽  
L Polley ◽  
E.J Jenkins

Global climate change is altering the ecology of infectious agents and driving the emergence of disease in people, domestic animals, and wildlife. We present a novel, empirically based, predictive model for the impact of climate warming on development rates and availability of an important parasitic nematode of muskoxen in the Canadian Arctic, a region that is particularly vulnerable to climate change. Using this model, we show that warming in the Arctic may have already radically altered the transmission dynamics of this parasite, escalating infection pressure for muskoxen, and that this trend is expected to continue. This work establishes a foundation for understanding responses to climate change of other host–parasite systems, in the Arctic and globally.


European View ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 156-162
Author(s):  
Romain Chuffart ◽  
Andreas Raspotnik

Dealing with climate change and developing the Arctic sustainably are often seen as both binary and contradictory sets of challenges. The EU is in a unique position in Arctic affairs: unlike non-Arctic states, it is part of and linked to the region. However, the EU is at risk of missing the opportunity to be a leader in setting standards for a coherent and sustainable approach for the region. The Arctic is often used as a symbol for global climate change and, conversely, climate change is also used as a reason for more Arctic engagement. Yet, the roots of global heating—greenhouse gas emissions—mostly originate from outside the region. This article asks whether the path towards more EU–Arctic involvement should start closer to home.


2016 ◽  
Vol 113 (17) ◽  
pp. 4640-4645 ◽  
Author(s):  
Yan Zhao ◽  
Benjamin Sultan ◽  
Robert Vautard ◽  
Pascale Braconnot ◽  
Huijun J. Wang ◽  
...  

Global climate change will increase the frequency of hot temperatures, impairing health and productivity for millions of working people and raising labor costs. In mainland China, high-temperature subsidies (HTSs) are allocated to employees for each working day in extremely hot environments, but the potential heat-related increase in labor cost has not been evaluated so far. Here, we estimate the potential HTS cost in current and future climates under different scenarios of socioeconomic development and radiative forcing (Representative Concentration Pathway), taking uncertainties from the climate model structure and bias correction into account. On average, the total HTS in China is estimated at 38.6 billion yuan/y (US $6.22 billion/y) over the 1979–2005 period, which is equivalent to 0.2% of the gross domestic product (GDP). Assuming that the HTS standards (per employee per hot day) remain unchanged throughout the 21st century, the total HTS may reach 250 billion yuan/y in the 2030s and 1,000 billion yuan/y in 2100. We further show that, without specific adaptation, the increased HTS cost is mainly determined by population growth until the 2030s and climate change after the mid-21st century because of increasingly frequent hot weather. Accounting for the likely possibility that HTS standards follow the wages, the share of GDP devoted to HTS could become as high as 3% at the end of 21st century.


2011 ◽  
Vol 11 (2) ◽  
pp. 6805-6843 ◽  
Author(s):  
G. B. Hedegaard ◽  
A. Gross ◽  
J. H. Christensen ◽  
W. May ◽  
H. Skov ◽  
...  

Abstract. The ozone chemistry over three centuries has been simulated based on climate prediction from a global climate model and constant anthropogenic emissions in order to separate out the effects on air pollution from climate change. Four decades in different centuries has been simulated using the chemistry version of the atmospheric long-range transport model; the Danish Eulerian Hemispheric Model (DEHM) forced with meteorology predicted by the ECHAM5/MPI-OM coupled Atmosphere-Ocean General Circulation Model. The largest changes in both meteorology, ozone and its precursors is found in the 21st century, however, also significant changes are found in the 22nd century. At surface level the ozone concentration is predicted to increase due to climate change in the areas where substantial amounts of ozone precursors are emitted. Elsewhere a significant decrease is predicted at the surface. In the free troposphere a general increase is found in the entire Northern Hemisphere except in the tropics, where the ozone concentration is decreasing. In the Arctic the ozone concentration will increase in the entire air column, which most likely is due to changes in transport. The change in temperature, humidity and the naturally emitted Volatile Organic Compounds (VOCs) are governing with respect to changes in ozone both in the past, present and future century.


2021 ◽  
Vol 6 ◽  
Author(s):  
Chui-Ling Tam ◽  
Suzanne Chew ◽  
Anabela Carvalho ◽  
Julie Doyle

The Arctic and its animals figure prominently as icons of climate change in Western imaginaries. Persuasive storytelling centred on compelling animal icons, like the polar bear, is a powerful strategy to frame environmental challenges, mobilizing collective global efforts to resist environmental degradation and species endangerment. The power of the polar bear in Western climate imagery is in part derived from the perceived “environmental sacredness” of the animal that has gained a totem-like status. In dominant “global” discourses, this connotation often works to the detriment of Indigenous peoples, for whom animals signify complex socio-ecological relations and cultural histories. This Perspective article offers a reflexive analysis on the symbolic power of the polar bear totem and the discursive exclusion of Indigenous peoples, informed by attendance during 2015–2017 at annual global climate change negotiations and research during 2016–2018 in Canada’s Nunavut Territory. The polar bear’s totem-like status in Western imaginaries exposes three discursive tensions that infuse climate change perception, activism, representation and Indigenous citizenship. The first tension concerns the global climate crisis, and its perceived threat to ecologically significant or sacred species, contrasted with locally lived realities. The second tension concerns a perceived sacred Arctic that is global, pristine, fragile and “contemplated,” but simultaneously local, hazardous, sustaining and lived. The third tension concerns Indigenization, distorted under a global climate gaze that reimagines the role of Indigenous peoples. Current discursive hegemony over the Arctic serves to place Indigenous peoples in stasis and restricts the space for Arctic Indigenous engagement and voice.


Author(s):  
Lars-Otto Reiersen ◽  
Robert W. Corell

This overview of climate observation, monitoring, and research for the Arctic region outlines the key elements essential to an enhanced understanding of the unprecedented climate change in the region and its global influences. The first recorded observation of sea ice extent around Svalbard date back to the whaling activities around 1600. Over the following 300 years there are periodic and inadequate observations of climate and sea ice from explorers seeking a northern sea route for sailing to Asia or reaching the North Pole. Around 1900 there were few fixed meteorological stations in the circumpolar North. During the Second World War and the following Cold War, the observation network increased significantly due to military interest. Since the 1970s the use of satellites has improved the climate and meteorological observations of Arctic areas, and advancements in marine observations (beneath the sea surface and within oceanic sediments) have contributed to a much improved network of climate and meteorological variables. Climate change in the Arctic and its possible effects within the Arctic and on global climate such as extreme weather and sea level rise were first reported in the ACIA 2005 report. Since then there has been a lot of climate-related assessments based on data from the Arctic and ongoing processes within the Arctic that are linked to global systems.


Sign in / Sign up

Export Citation Format

Share Document