scholarly journals Activation of the JAK1 / STAT1 Signaling Pathway is Associated with Prdx6 Expression Levels in Human Epididymis Epithelial Cells

Author(s):  
Jianyuan Li ◽  
Hui Shi ◽  
Xiaoyu Liu ◽  
Yanwei Wang ◽  
Haiyan Wang ◽  
...  

Abstract I. Background: Peroxiredoxin 6 (Prdx6) is widely expressed in mammalian tissues. Our previous study demonstrated that Prdx6 was expressed in human epididymis and spermatozoa, and the protective role of Prdx6 in human spermatozoa was also reported. In this study, we demonstrate the potential role and mechanism of Prdx6 in human epididymis epithelial cells (HEECs).II. Methods and Results: Western blotting was used to measure expression levels of key proteins in the JAK / STAT signaling pathway. Digital gene expression analysis (DGE) was used to identify gene expression patterns in control HECs and in HECs after Prdx6-RNA interference (P6-RNAi). The DGE analysis identified 589 up-regulated and 314 down-regulated genes (including Prdx6) in Prdx6-RNAi (P6-RNAi) HEECs. Thirteen significantly different pathways were identified between the two groups, with the majority different expressed genes belonging to the CCL, CXCL, IL, and IFIT families. In particular, the expression levels of IL6, IL6ST, and eighteen IFN related genes were significantly increased in the condition of the down-regulated expression of Prdx6. Compared to control HEECs, the expression levels of JAK1, STAT1, phosphorylated JAK1 and STAT1 were significantly increased, while the expression levels of SOCS3 was significantly decreased in P6-RNAi HEECs. The Malondialdehyde (MDA) level and total antioxidant capacity in P6-RNAi HEECs were significantly increased and decreased compared to that of control, respectively. III. Conclusions: We speculated that knockdown of Prdx6 resulted in higher levels of ROS in HEECs, which in turn, activated the JAK1 / STAT1 signaling pathway induced by IL-6 receptor and IFN.

2020 ◽  
Author(s):  
Jaroslav Rokicki ◽  
Daniel S Quintana ◽  
Lars T. Westlye

The measurement of gene expression levels in the human brain can help accelerate our understanding of complex mental states and psychiatric illnesses. Mental states are typically associated with whole-brain networks, however, gene expression levels from post-mortem brain samples have traditionally been measured in a limited number of brain regions due to resource limitations. The recent availability of whole-brain gene expression data from the Allen Human Brain Atlas (AHBA) provides the opportunity to generate gene expression patterns for over 20,000 genes. By linking these expression patterns with brain activity patterns that are associated with specific mental states, researchers can better understand which genes may support given mental states, via forward inference. Conversely, reverse inference can also be used to determine which mental state activation patterns are most strongly associated with a given gene expression map. This chapter provides a step-by-step guide on how to use the AHBA in conjunction with the NeuroSynth fMRI meta-analysis tool to identify the mental state correlates of specific gene expression patterns, using genes from oxytocin signaling pathway as an example. We also demonstrate how to perform an out-of-sample validation and assess the specificity of results for genes of interest.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hitoshi Iuchi ◽  
Michiaki Hamada

Abstract Time-course experiments using parallel sequencers have the potential to uncover gradual changes in cells over time that cannot be observed in a two-point comparison. An essential step in time-series data analysis is the identification of temporal differentially expressed genes (TEGs) under two conditions (e.g. control versus case). Model-based approaches, which are typical TEG detection methods, often set one parameter (e.g. degree or degree of freedom) for one dataset. This approach risks modeling of linearly increasing genes with higher-order functions, or fitting of cyclic gene expression with linear functions, thereby leading to false positives/negatives. Here, we present a Jonckheere–Terpstra–Kendall (JTK)-based non-parametric algorithm for TEG detection. Benchmarks, using simulation data, show that the JTK-based approach outperforms existing methods, especially in long time-series experiments. Additionally, application of JTK in the analysis of time-series RNA-seq data from seven tissue types, across developmental stages in mouse and rat, suggested that the wave pattern contributes to the TEG identification of JTK, not the difference in expression levels. This result suggests that JTK is a suitable algorithm when focusing on expression patterns over time rather than expression levels, such as comparisons between different species. These results show that JTK is an excellent candidate for TEG detection.


Author(s):  
Ana M Mesa ◽  
Jiude Mao ◽  
Theresa I Medrano ◽  
Nathan J Bivens ◽  
Alexander Jurkevich ◽  
...  

Abstract Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of homolog 2 (EZH2), is a histone methyltransferase that methylates lysine residue 27, and thereby, suppresses gene expression. EZH2 plays integral role in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNAseq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide the mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hidetoshi Ishida ◽  
Teppei Shibata ◽  
Yuka Nakamura ◽  
Yasuhito Ishigaki ◽  
Dhirendra P. Singh ◽  
...  

The Shumiya cataract rat (SCR) is a model for hereditary cataract. Two-thirds of these rats develop lens opacity within 10-11 weeks. Onset of cataract is attributed to the synergetic effect of lanosterol synthase (Lss) and farnesyl-diphosphate farnesyltransferase 1 (Fdft1) mutant alleles that lead to cholesterol deficiency in the lenses, which in turn adversely affects lens biology including the growth and differentiation of lens epithelial cells (LECs). Nevertheless, the molecular events and changes in gene expression associated with the onset of lens opacity in SCR are poorly understood. In the present study, a microarray-based approach was employed to analyze comparative gene expression changes in LECs isolated from the precataractous and cataractous stages of lenses of 5-week-old SCRs. The changes in gene expression observed in microarray results in the LECs were further validated using real-time reverse transcribed quantitative PCR (RT-qPCR) in 5-, 8-, and 10-week-old SCRs. A mild posterior and cortical opacity was observed in 5-week-old rats. Expressions of approximately 100 genes, including the major intrinsic protein of the lens fiber (Mip and Aquaporin 0), deoxyribonuclease II beta (Dnase2B), heat shock protein B1 (HspB1), and crystallin γ (γCry) B, C, and F, were found to be significantly downregulated (0.07-0.5-fold) in rat LECs derived from cataract lenses compared to that in noncataractous lenses (control). Thus, our study was aimed at identifying the gene expression patterns during cataract formation in SCRs, which may be responsible for cataractogenesis in SCR. We proposed that cataracts in SCR are associated with reduced expression of these lens genes that have been reported to be related with lens fiber differentiation. Our findings may have wider implications in understanding the effect of cholesterol deficiency and the role of cholesterol-lowering therapeutics on cataractogenesis.


2004 ◽  
Vol 32 (2) ◽  
pp. 449-466 ◽  
Author(s):  
S Bauersachs ◽  
S Rehfeld ◽  
SE Ulbrich ◽  
S Mallok ◽  
K Prelle ◽  
...  

The oviduct epithelium undergoes marked morphological and functional changes during the oestrous cycle. To study these changes at the level of the transcriptome we did a systematic gene expression analysis of bovine oviduct epithelial cells at oestrus and dioestrus using a combination of subtracted cDNA libraries and cDNA array hybridisation. A total of 3072 cDNA clones of two subtracted libraries were analysed by array hybridisation with cDNA probes derived from six cyclic heifers, three of them slaughtered at oestrus and three at dioestrus. Sequencing of cDNAs showing significant differences in their expression levels revealed 77 different cDNAs. Thirty-seven were expressed at a higher level at oestrus, for the other 40 genes expression levels were higher at dioestrus. The identified genes represented a variety of functional classes. During oestrus especially genes involved in the regulation of protein secretion and protein modification, and mRNAs of secreted proteins, were up-regulated, whereas during dioestrus particularly transcripts of genes involved in transcription regulation showed a slight up-regulation. The concentrations of seven selected transcripts were quantified by real-time RT-PCR to validate the cDNA array hybridisation data. For all seven transcripts, RT-PCR results were in excellent correlation (r>0.92) with the results obtained by array hybridisation. Our study is the first to analyse changes in gene expression profiles of bovine oviduct epithelial cells during different stages of the oestrous cycle, providing a starting point for the clarification of the key transcriptome changes in these cells.


2019 ◽  
Vol 51 (11) ◽  
pp. 539-552
Author(s):  
Osman V. Patel ◽  
Theresa Casey ◽  
Karen Plaut

Modifications in the abundance of solute-carrier (SLC) transcripts in tandem with adjustments in genes-associated with energy homeostasis during the postpartum transition of the mammary epithelial cells (MEC) from nonsecretory to secretory is pivotal for supporting milk synthesis. The goal of this study was to identify differentially expressed SLC genes across key metabolic tissues between late pregnancy and onset of lactation. Total RNA was isolated from the mammary, liver, and adipose tissues collected from rat dams on day 20 of pregnancy (P20) and day 1 of lactation (L1) and gene expression was measured with Rat 230 2.0 Affymetrix GeneChips. LIMMA was utilized to identify the differential gene expression patterns between P20 and L1 tissues. Transcripts engaged in conveying anions, cations, carboxylates, sugars, amino acids, metals, nucleosides, vitamins, and fatty acids were significantly increased ( P < 0.05) in MEC during the P20 to L1 shift. Downregulated ( P < 0.05) genes in the mammary during the physiological transition included GLUT8 and SLC45a3. In the liver, SLC genes encoding for anion, carbonyl, and nucleotide sugar transporters were upregulated ( P < 0.05) at L1. while genes facilitating transportation of anions and hexose were increased ( P < 0.05), from P20 to L1 in the adipose tissue. GLUT1 and GLUT4 in the liver, along with GLUT4 and SGLT2 in the adipose tissue, were repressed ( P < 0.05) at L1. Our results illustrate that MEC exhibit dynamic molecular plasticity during the nonsecretory to secretory transition and increase biosynthetic capacity through a coordinated tissue specific SLC transcriptome modification to facilitate substrate transfer.


2003 ◽  
Vol 14 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Susan Keay ◽  
Francoise Seillier-Moiseiwitsch ◽  
Chen-Ou Zhang ◽  
Toby C. Chai ◽  
Jialu Zhang

Explanted bladder epithelial cells from patients with interstitial cystitis (IC) have been shown to differ from explanted control cells in several ways, including production of an antiproliferative factor (APF), altered production of certain epithelial growth factors, and rate of proliferation. To better understand the role of the APF in abnormal bladder epithelial cell proliferation in IC, we studied gene expression patterns in normal bladder epithelial cells treated with APF vs. mock APF and compared them to expression patterns in IC vs. normal cells using microarray analysis. Oligo-dT-primed total cellular RNA was labeled with [33P]dCTP and hybridized to GeneFilter GF211 microarray membranes (Research Genetics) containing cDNA for 3,964 human genes. Thirteen genes that function in epithelial cell proliferation or differentiation were consistently differentially expressed in both IC (compared with control) and APF-treated (compared with mock APF-treated) normal bladder epithelial cells. The general pattern of gene expression in IC and APF-treated cells suggested a less proliferative phenotype, with increased expression of E-cadherin, phosphoribosylpyrophosphate synthetase-associated protein 39, and SWI/SNF complex 170-kDa subunit, and decreased expression of vimentin, α2-integrin, α1-catenin, cyclin D1, and jun N-terminal kinase 1; these findings were confirmed for the structural gene products (E-cadherin, vimentin, α2-integrin, and α-catenin) by immunohistochemistry. These results are compatible with the previously noted decreased proliferation rate of IC and APF-treated normal cells, and indicate that the mechanism whereby APF inhibits cell proliferation may involve both downregulation of genes that stimulate cell proliferation along with upregulation of genes that inhibit cell growth.


Sign in / Sign up

Export Citation Format

Share Document