scholarly journals S100A16 Promotes Acute Kidney Injury By Activating HRD1-Induced Ubiquitination And Degradation of GSK3β And CK1α

Author(s):  
Yifei Sun ◽  
Ya Fan ◽  
Min Li ◽  
Zheng Wang ◽  
Dongming Su ◽  
...  

Abstract The pathogenesis of acute kidney injury (AKI) is associated with activation of multiple signaling pathways, including Wnt/β-catenin signaling. However, the mechanism of Wnt/β-catenin pathway activation in renal interstitial fibroblasts during AKI is unclear. S100 calcium binding protein A16 (S100A16), a new member of calcium binding protein S100 family, is a multi-functional signaling factor involved in various pathogenies, including tumors, glycolipid metabolism disorder, and chronic kidney disease (CKD). We investigated the potential participation of S100A16 in Wnt/β-catenin pathway activation during AKI by subjecting wild-type (WT) and S100A16 knockout (S100A16+/-) mice to the ischemia-reperfusion injury (IRI), and revealed S100A16 upregulation in this model, in which knockout of S100A16 impeded the Wnt/β-catenin signaling pathway activation and recovered the expression of downstream hepatocyte growth factor (HGF). We also found that S100A16 was highly expressed in α-SMA positive renal fibroblasts in vivo. Consistently, in rat renal interstitial fibroblasts (NRK-49F cells), both hypoxia and S100A16 overexpression exacerbated fibroblasts apoptosis and inhibited HGF secretion; whereas S100A16 knockdown or Wnt/β-catenin pathway inhibitor ICG-001 reversed these changes. Mechanistically, we show that S100A16 promotes Wnt/β-catenin signaling activation via the ubiquitylation and degradation of β-catenin complex members, glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α), mediated by E3 ubiquitin ligase, the HMG-CoA reductase degradation protein 1 (HRD1). Our study identified the S100A16 as a key regulator in the activation of Wnt/β-catenin signaling pathway in AKI.

2016 ◽  
Vol 310 (6) ◽  
pp. F569-F579 ◽  
Author(s):  
Mohammad M. Al-bataineh ◽  
Carol L. Kinlough ◽  
Paul A. Poland ◽  
Núria M. Pastor-Soler ◽  
Timothy A. Sutton ◽  
...  

The hypoxia-inducible factor (HIF)-1 and β-catenin protective pathways represent the two most significant cellular responses that are activated in response to acute kidney injury. We previously reported that murine mucin (Muc)1 protects kidney function and morphology in a mouse model of ischemia-reperfusion injury (IRI) by stabilizing HIF-1α, enhancing HIF-1 downstream signaling, and thereby preventing metabolic stress (Pastor-Soler et al. Muc1 is protective during kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 308: F1452–F1462, 2015). We asked if Muc1 regulates the β-catenin protective pathway during IRI as 1) β-catenin nuclear targeting is MUC1 dependent in cultured human cells, 2) β-catenin is found in coimmunoprecipitates with human MUC1 in extracts of both cultured cells and tissues, and 3) MUC1 prevents β-catenin phosphorylation by glycogen synthase kinase (GSK)3β and thereby β-catenin degradation. Using the same mouse model of IRI, we found that levels of active GSK3β were significantly lower in kidneys of control mice compared with Muc1 knockout (KO) mice. Consequently, β-catenin was significantly upregulated at 24 and 72 h of recovery and appeared in the nuclear fraction at 72 h in control mouse kidneys. Both β-catenin induction and nuclear targeting were absent in Muc1 KO mice. We also found downstream induction of β-catenin prosurvival factors (activated Akt, survivin, transcription factor T cell factor 4 (TCF4), and its downstream target cyclin D1) and repression of proapoptotic factors (p53, active Bax, and cleaved caspase-3) in control mouse kidneys that were absent or aberrant in kidneys of Muc1 KO mice. Altogether, the data clearly indicate that Muc1 protection during acute kidney injury proceeds by enhancing both the HIF-1 and β-catenin protective pathways.


2021 ◽  
Vol 16 (1) ◽  
pp. 537-543
Author(s):  
Mei Zhang ◽  
Jing Yuan ◽  
Rong Dong ◽  
Jingjing Da ◽  
Qian Li ◽  
...  

Abstract Background Hyperhomocysteinemia (HHcy) plays an important role in the progression of many kidney diseases; however, the relationship between HHcy and ischemia-reperfusion injury (IRI)-induced acute kidney injury (IRI-induced AKI) is far from clear. In this study, we try to investigate the effect and possible mechanisms of HHcy on IRI-induced AKI. Methods Twenty C57/BL6 mice were reared with a regular diet or high methionine diet for 2 weeks (to generate HHcy mice); after that, mice were subgrouped to receive sham operation or ischemia-reperfusion surgery. Twenty four hour after reperfusion, serum creatinine, blood urea nitrogen, and Malondialdehyde (MDA) were measured. H&E staining for tubular injury, western blot for γH2AX, JNK, p-JNK, and cleaved caspase 3, and TUNEL assay for tubular cell apoptosis were also performed. Results Our results showed that HHcy did not influence the renal function and histological structure, as well as the levels of MDA, γH2AX, JNK, p-JNK, and tubular cell apoptosis in control mice. However, in IRI-induced AKI mice, HHcy caused severer renal dysfunction and tubular injury, higher levels of oxidative stress, DNA damage, JNK pathway activation, and tubular cell apoptosis. Conclusion Our results demonstrated that HHcy could exacerbate IRI-induced AKI, which may be achieved through promoting oxidative stress, DNA damage, JNK pathway activation, and consequent apoptosis.


2017 ◽  
Vol 37 (22) ◽  
Author(s):  
Lei Yu ◽  
Takashi Moriguchi ◽  
Hiroshi Kaneko ◽  
Makiko Hayashi ◽  
Atsushi Hasegawa ◽  
...  

ABSTRACT Acute kidney injury (AKI) is a leading cause of chronic kidney disease. Proximal tubules are considered to be the primary origin of pathogenic inflammatory cytokines in AKI. However, it remains unclear whether other cell types, including collecting duct (CD) cells, participate in inflammatory processes. The transcription factor GATA2 is specifically expressed in CD cells and maintains their cellular identity. To explore the pathophysiological function of GATA2 in AKI, we generated renal tubular cell-specific Gata2 deletion (G2CKO) mice and examined their susceptibility to ischemia reperfusion injury (IRI). Notably, G2CKO mice exhibited less severe kidney damage, with reduced granulomacrophagic infiltration upon IRI. Transcriptome analysis revealed that a series of inflammatory cytokine genes were downregulated in GATA2-deficient CD cells, suggesting that GATA2 induces inflammatory cytokine expression in diseased kidney CD cells. Through high-throughput chemical library screening, we identified a potent GATA inhibitor. The chemical reduces cytokine production in CD cells and protects the mouse kidney from IRI. These results revealed a novel pathological mechanism of renal IRI, namely, that CD cells produce inflammatory cytokines and promote IRI progression. In injured kidney CD cells, GATA2 exerts a proinflammatory function by upregulating inflammatory cytokine gene expression. GATA2 can therefore be considered a therapeutic target for AKI.


Author(s):  
Razvan Andrei CODEA ◽  
Mircea MIRCEAN ◽  
Sidonia Alina BOGDAN ◽  
Andras Laszlo NAGY ◽  
Alexandra BIRIS ◽  
...  

The identification of a suitable prevention method which facilitates limiting the deleterious effects of acute kidney injuries is highly required. In order to identify a proper treatment for acute kidney injuries, a suitable experimental model that replicates the structural, metabolic and inflammatory lesions that occur in the natural acute injured kidney is highly necessary. Intense urinary NAG activity can be found in a variety of renal disease such as toxic nephropathies, ischemic renal injury following cardiac surgery or renal transplantation but also in glomerular disease especially in diabetic nephropathy. Rises in urinary NAG enzyme activity strongly suggests tubular cell damage and support NAG enzyme as a biomarker of renal tubular injury. The aim of this paper is to obtain a stable in vivo acute kidney injury experimental model, in Wistar, rats and to evaluate the urinary activity of N-acetyl-β-D-glucosaminidase (NAG) enzyme, blood levels of urea and creatinine and microstructural renal alterations induced by ischemia/reperfusion injury respectively gentamicin nephrotoxicity. For this purpose we have used a rat experimental model. Adult male Wistar rats weighing 250-300 g were randomly divided into 3 groups with 8 rats in each group. Group 1 served as a model for the renal ischemia/reperfusion injury experiment, group 2 served for toxic kidney injury experimental model and group 3 served as control group. All individuals in both groups 1 and 2 presented marked elevations in blood urea and creatinine at the moment of euthanasia (day 3 for group 1 and day 9 for group 2) compared to the control group where biochemical values remained within normal limits. Urine analysis of both group 1 and 2 showed marked urinary NAG index activity which suggests acute tubular injury, suggestion confirmed by histological evaluation of the renal parenchyma sampled from this subjects


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Julia Wilflingseder ◽  
Michaela Willi ◽  
Hye Kyung Lee ◽  
Hannes Olauson ◽  
Jakub Jankowsky ◽  
...  

Abstract Background and Aims The endogenous repair process of the mammalian kidney allows rapid recovery after acute kidney injury (AKI) through robust proliferation of tubular epithelial cells. There is currently limited understanding of which transcriptional regulators activate these repair programs and how transcriptional dysregulation leads to maladaptive repair. Here we investigate the existence of enhancer dynamics in the regenerating mouse kidney. Method RNA-seq and ChIP-seq (H3K27ac, H3K4m3, BRD4, POL2 and selected transcription factors) were performed on samples from repairing kidney cortex 2 days after ischemia/reperfusion injury (IRI) to identify activated genes, transcription factors, enhancer and super-enhancers associated with kidney repair. Further we investigated the role of super-enhancer activation in kidney repair through pharmacological BET inhibition using the small molecule JQ1 in vitro and in acute kidney injury models in vivo. Results Response to kidney injury leads to genome-wide alteration in enhancer repertoire in-vivo. We identified 16,781 enhancer sites (H3K27ac and BRD4 positive, H3K4me3 negative binding) active in SHAM and IRI samples; 6,512 lost and 9,774 gained after IRI. The lost and gained enhancer sites can be annotated to 62% and 63% of down- and up-regulated transcripts at day 2 after kidney injury, respectively. Super-enhancer analysis revealed 164 lost and 216 gained super-enhancer sites at IRI day 2. 385 super-enhancers maintain activity before and after injury. ChIP-seq profiles of selected transcription factors based on motif analysis show specific binding at corresponding enhancer sites. We observed lost enhancer binding of HNF4A and GR mainly at kidney related enhancer elements. In contrast, STAT3 showed increased binding at injury induces enhancer elements. No dynamic was observed for STAT5. Both transcription factor groups show corresponding mRNA changes after injury. Pharmacological inhibition of enhancer and super-enhancer activity by BRD4 inhibition (JQ1: 50mg/kg/day) before IRI leads to suppression of 40% of injury-induced transcripts associated with cell cycle regulation and significantly increased mortality between days 2 and 3 after AKI. Conclusion This is the first demonstration of enhancer and super-enhancer function in the repairing kidney. In addition, our data call attention to potential caveats for use of small molecule inhibitors of BET proteins that are currently being tested in clinical trials in cancer patients who are at risk for AKI. Our analyses of enhancer dynamics after kidney injury in vivo have the potential to identify new targets for therapeutic intervention.


2015 ◽  
Vol 87 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Mark C. Dessing ◽  
Alessandra Tammaro ◽  
Wilco P. Pulskens ◽  
Gwendoline J. Teske ◽  
Loes M. Butter ◽  
...  

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Johanna Störmer ◽  
Faikah Gueler ◽  
Song Rong ◽  
Mi-Sun Jang ◽  
Nelli Shushakova ◽  
...  

Abstract Background and Aims Diclofenac is frequently used for pain control. In a previous study, we showed that already a single oral dose of diclofenac could reduce renal perfusion in healthy individuals. To investigate the influence of oral diclofenac administration on renal inflammation in the setting of pre-existing renal damage, we used a mouse model of subclinical acute kidney injury (AKI) induced by renal ischemia-reperfusion injury (IRI) followed by diclofenac administration. Method Male CD1 mice (7-8 weeks old) underwent unilateral renal pedicle clamping for 15min to induce subclinical AKI. After reperfusion mice received a single oral dose of 100 or 200mg/kg diclofenac via oral gavage. Vehicle treated mice with unilateral IRI served as control. At day 1, mice were placed into metabolic cages to collect urine. Histology was performed on day 1 and 14 for renal morphology. Inflammation and fibrosis were investigated by immunohistochemistry and qPCR. Results Diclofenac treated mice showed reduced urine production. Morphologically, signs of AKI were more pronounced in diclofenac treated kidneys which also showed more Cox-2 positive tubuli in the cortex. On mRNA expression level the pro-inflammatory markers IL-6 and CXCL2, the chemoattractant for neutrophils, were elevated in the diclofenac group. Early upregulation of the pro-fibrotic markers CTGF and PAI-1 was detected already on d1 after IRI in the diclofenac group and tubular atrophy was pronounced after two weeks. Conclusion Already, a single oral dose of diclofenac causes aggravation of renal inflammation and progressive renal fibrosis in the setting of pre-existing subclinical acute kidney injury.


2015 ◽  
Vol 309 (10) ◽  
pp. F852-F863 ◽  
Author(s):  
Sara Hirsch ◽  
Tarek El-Achkar ◽  
Lynn Robbins ◽  
Jeannine Basta ◽  
Monique Heitmeier ◽  
...  

It has been postulated that developmental pathways are reutilized during repair and regeneration after injury, but functional analysis of many genes required for kidney formation has not been performed in the adult organ. Mutations in SALL1 cause Townes-Brocks syndrome (TBS) and nonsyndromic congenital anomalies of the kidney and urinary tract, both of which lead to childhood kidney failure. Sall1 is a transcriptional regulator that is expressed in renal progenitor cells and developing nephrons in the embryo. However, its role in the adult kidney has not been investigated. Using a mouse model of TBS ( Sall1 TBS), we investigated the role of Sall1 in response to acute kidney injury. Our studies revealed that Sall1 is expressed in terminally differentiated renal epithelia, including the S3 segment of the proximal tubule, in the mature kidney. Sall1 TBS mice exhibited significant protection from ischemia-reperfusion injury and aristolochic acid-induced nephrotoxicity. This protection from acute injury is seen despite the presence of slowly progressive chronic kidney disease in Sall1 TBS mice. Mice containing null alleles of Sall1 are not protected from acute kidney injury, indicating that expression of a truncated mutant protein from the Sall1 TBS allele, while causative of congenital anomalies, protects the adult kidney from injury. Our studies further revealed that basal levels of the preconditioning factor heme oxygenase-1 are elevated in Sall1 TBS kidneys, suggesting a mechanism for the relative resistance to injury in this model. Together, these studies establish a functional role for Sall1 in the response of the adult kidney to acute injury.


Sign in / Sign up

Export Citation Format

Share Document