scholarly journals Unilaterally Disrupted Structural and Functional Connectivity of The Fronto-Iimbic System In Idiopathic Hypogonadotropic Hypogonadism

Author(s):  
Jibin Cao ◽  
Lingling Cui ◽  
Zhiyang Yin ◽  
Boyu Chen ◽  
Hu Liu ◽  
...  

Abstract Background: Idiopathic hypogonadotropic hypogonadism (IHH) is rare and can either be associated with normal or defective olfactory sensation, classified as normosmic IHH (nIHH) or Kallmann’s syndrome (KS), respectively. We do not yet understand the central processing pathways in the olfactory system, especially regarding these disorders. We aimed to compare the resting-state structural and functional connectivity (FC) of olfactory neural pathways in patients with nIHH and KS.Methods: A total of 50 males were studied: 13 nIHH patients, 12 KS patients, and 25 healthy controls (HCs). All subjects underwent diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) scans. Structural and functional connectivity data analyses were then performed.Results: The results indicated that fractional anisotropy (FA) was significantly decreased in the right uncinate fasciculus (UF) in the KS group. The olfactory cortex FC values of the right gyrus rectus and orbitofrontal cortex (OFC) in the KS group were decreased compared with those in the HC group and increased compared with those in the nIHH group (nIHH< KS <HC). Moreover, there were significant negative correlations between right UF FA and olfactory cortex FC to both the gyrus rectus and OFC within the nIHH and HC groups.Conclusion: We have reported significant structural and functional disruptions unilaterally at the right junction of the fronto-limbic system in KS patients. The results may indicate that a specific structural-functional asymmetry exists in the olfactory cortex pathways in KS patients.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Guangyu Zhou ◽  
Gregory Lane ◽  
Shiloh L Cooper ◽  
Thorsten Kahnt ◽  
Christina Zelano

The central processing pathways of the human olfactory system are not fully understood. The olfactory bulb projects directly to a number of cortical brain structures, but the distinct networks formed by projections from each of these structures to the rest of the brain have not been well-defined. Here, we used functional magnetic resonance imaging and k-means clustering to parcellate human primary olfactory cortex into clusters based on whole-brain functional connectivity patterns. Resulting clusters accurately corresponded to anterior olfactory nucleus, olfactory tubercle, and frontal and temporal piriform cortices, suggesting dissociable whole-brain networks formed by the subregions of primary olfactory cortex. This result was replicated in an independent data set. We then characterized the unique functional connectivity profiles of each subregion, producing a map of the large-scale processing pathways of the human olfactory system. These results provide insight into the functional and anatomical organization of the human olfactory system.


2019 ◽  
Vol 37 (02) ◽  
pp. 137-145
Author(s):  
Stephanie L. Merhar ◽  
Elveda Gozdas ◽  
Jean A. Tkach ◽  
Nehal A. Parikh ◽  
Beth M. Kline-Fath ◽  
...  

Objective The accuracy of structural magnetic resonance imaging (MRI) to predict later cerebral palsy (CP) in newborns with perinatal brain injury is variable. Diffusion tensor imaging (DTI) and task-based functional MRI (fMRI) show promise as predictive tools. We hypothesized that infants who later developed CP would have reduced structural and functional connectivity as compared with those without CP. Study Design We performed DTI and fMRI using a passive motor task at 40 to 48 weeks' postmenstrual age in 12 infants with perinatal brain injury. CP was diagnosed at age 2 using a standardized examination. Results Five infants had CP at 2 years of age, and seven did not have CP. Tract-based spatial statistics showed a widespread reduction of fractional anisotropy (FA) in almost all white matter tracts in the CP group. Using the median FA value in the corticospinal tracts as a cutoff, FA was 100% sensitive and 86% specific to predict CP compared with a sensitivity of 60 to 80% and a specificity of 71% for structural MRI. During fMRI, the CP group had reduced functional connectivity from the right supplemental motor area as compared with the non-CP group. Conclusion DTI and fMRI obtained soon after birth are potential biomarkers to predict CP in newborns with perinatal brain injury.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S293-S293
Author(s):  
Ana Pinheiro ◽  
Sylvain Bouix ◽  
Nikos Makris ◽  
Michael Schwartze ◽  
Martha Shenton ◽  
...  

Abstract Background Auditory verbal hallucinations (AVH) have been explained in the context of the forward model, giving the cerebellum a prominent role. However, research utilizing multiple neuroimaging modalities has rendered results on the specificity of cerebellar contribution to AVH unclear. Methods To examine the reliability and regional specificity of cerebellar changes in AVH, a systematic search of electronic databases through October 2019 was conducted to identify neuroimaging studies of the cerebellum in psychotic patients or nonclinical participants reporting AVH, focusing on structural MRI, diffusion tensor imaging, and resting state functional connectivity studies. Twenty-two studies were selected, including 892 participants with AVH (792 psychotic patients; 100 at-risk subjects) and 775 healthy controls. Activation likelihood estimate analysis (ALE) examined the reported coordinates for reduced volume, fractional anisotropy (FA) or connectivity (control participants &gt; participants with AVH) and increased volume, FA or connectivity (participants with AVH &gt; control participants). The consistency of cerebellar changes and their relationship with sociodemographic and clinical measures were meta-analyzed. Results The ALE meta-analysis revealed changes in both anterior and posterior cerebellar lobes, with opposite patterns: whereas decreased volume or connectivity was identified in the right anterior cerebellum (lobule IV/V), increased volume or connectivity was identified in the bilateral posterior cerebellum (Crus I and II). A random-effects model with small sample corrections identified consistent changes in both volume and functional connectivity of the cerebellum in participants with AVH (g = .84; SE = .24, 95% CI [.33, 1.34]), which were enhanced in Crus I (g = 1.52, SE = .28, p = .006, 95% CI [.73, 2.31]) but not moderated by age, sex, medication, or illness duration. Discussion The ALE meta-analysis confirms cerebellar structural and connectivity changes in psychotic and nonclinical participants reporting AVH. These changes may contribute to AVH due to altered sensory feedback and consequently to erratic prediction as described by the forward model. The current findings also indicate that not all cerebellar regions are equally affected by AVH: the most pronounced changes were observed in Crus I. Specifically, altered communication between Crus I and neocortical network nodes, including the prefrontal cortex, may contribute to ineffective cognitive control in AVH, leading to external misattributions of auditory feedback and a reduced sense of control over events in the environment.


2021 ◽  
Author(s):  
Hans-Christoph Aster ◽  
Dimitar Evdokimov ◽  
Alexandra Braun ◽  
Nurcan Üçeyler ◽  
Thomas Kampf ◽  
...  

Abstract We tested the hypothesis that reduced skin innervation in fibromyalgia syndrome is associated with specific CNS changes. This prospective case-control study included 43 women diagnosed with fibromyalgia syndrome and 40 healthy controls. We further compared the fibromyalgia subgroups with reduced (n=21) and normal (n=22) skin innervation. Brains were analysed for cortical thickness, for white matter integrity, and for functional connectivity. Compared to controls, cortical thickness was decreased in the left pars opercularis in the fibromyalgia group as a whole, and decreased in the left superior frontal and left rostral middle frontal cortex in the fibromyalgia subgroup with reduced skin innervation. Diffusion tensor imaging revealed a significant increase in fractional anisotropy in the corona radiata, the corpus callosum, cingulum and fornix in patients with fibromyalgia compared to healthy controls. Using resting-state fMRI, the fibromyalgia group as a whole showed functional hypoconnectivity between the right midfrontal gyrus and the posterior cerebellum and the right crus cerebellum, respectively. The subgroup with reduced skin innervation showed hyperconnectivity between the right cuneal cortex and the anterior parahippocampal gyrus, between the left thalamus and the lateral parietal region in the default mode network and hypoconnectivity between the left frontal lobe and the right cerebellum crus 1. Our results suggest that the subgroup of fibromyalgia patients with pronounced pathology in the peripheral nervous system shows distinctly altered morphology, structural and functional connectivity also at the level of the brain. We propose considering these subgroups when conducting clinical trials.


2013 ◽  
Author(s):  
Yui Watanabe ◽  
Takeshi Hayashi ◽  
Hiroyuki Yamazaki ◽  
Katsuyoshi Tojo ◽  
Kazunori Utsunomiya

2015 ◽  
Author(s):  
Sasha Howard ◽  
Ariel Poliandri ◽  
Helen Storr ◽  
Louise Metherell ◽  
Claudia Cabrera ◽  
...  

2015 ◽  
pp. 290-339

Evidence from neural science supports a neuroplasticity thesis where the development and rehabilitation of functional neural pathways can be facilitated by management of biological factors, central processing and environmental interactions. Healthy eyes and clear sight are not themselves sufficient for efficient functional vision. How a person uses vision determines their operational skill. Efficient functional vision requires dynamic interactions between and within visual receptive and reflexive biology, acquired neural networks that serve basic visual inspection processes and visuo-cognitive operational patterns driving top down visual – spatial analysis and problem solving. This presentation is a review and discussion of evidence-based practice (EBP) principles that we utilise in clinical neuro-developmental and rehabilitative optometric vision therapy (OVT) for selected visual deficits and dysfunctions. OVT services, like other collaborative therapies such as cognitive behavioural therapy, speech therapy and occupational therapy, must progressively adapt to new knowledge and advancing technology through EBP. Clinical services directed at treatable neuro-developmental and acquired dynamic functional vision problems require the application of an emerging set of principles resulting from systematic logic and EBP related to the art and science of case analysis, practice management and OVT delivery.


2021 ◽  
pp. 216770262110302
Author(s):  
M. Justin Kim ◽  
Maxwell L. Elliott ◽  
Annchen R. Knodt ◽  
Ahmad R. Hariri

Past research on the brain correlates of trait anger has been limited by small sample sizes, a focus on relatively few regions of interest, and poor test–retest reliability of functional brain measures. To address these limitations, we conducted a data-driven analysis of variability in connectome-wide functional connectivity in a sample of 1,048 young adult volunteers. Multidimensional matrix regression analysis showed that self-reported trait anger maps onto variability in the whole-brain functional connectivity patterns of three brain regions that serve action-related functions: bilateral supplementary motor areas and the right lateral frontal pole. We then demonstrate that trait anger modulates the functional connectivity of these regions with canonical brain networks supporting somatomotor, affective, self-referential, and visual information processes. Our findings offer novel neuroimaging evidence for interpreting trait anger as a greater propensity to provoked action, which supports ongoing efforts to understand its utility as a potential transdiagnostic marker for disordered states characterized by aggressive behavior.


2021 ◽  
Author(s):  
Weihong Yuan ◽  
Jonathan Dudley ◽  
Alexis B Slutsky-Ganesh ◽  
James Leach ◽  
Pete Scheifele ◽  
...  

ABSTRACT Introduction Special Weapons and Tactics (SWAT) personnel who practice breaching with blast exposure are at risk for blast-related head trauma. We aimed to investigate the impact of low-level blast exposure on underlying white matter (WM) microstructure based on diffusion tensor imaging (DTI) and neurite orientation and density imaging (NODDI) in SWAT personnel before and after breacher training. Diffusion tensor imaging is an advanced MRI technique sensitive to underlying WM alterations. NODDI is a novel MRI technique emerged recently that acquires diffusion weighted data from multiple shells modeling for different compartments in the microstructural environment in the brain. We also aimed to evaluate the effect of a jugular vein compression collar device in mitigating the alteration of the diffusion properties in the WM as well as its role as a moderator on the association between the diffusion property changes and the blast exposure. Materials and Methods Twenty-one SWAT personnel (10 non-collar and 11 collar) completed the breacher training and underwent MRI at both baseline and after blast exposure. Diffusion weighted data were acquired with two shells (b = 1,000, 2,000 s/mm2) on 3T Phillips scanners. Diffusion tensor imaging metrices, including fractional anisotropy, mean, axial, and radial diffusivity, and NODDI metrics, including neurite density index (NDI), isotropic volume fraction (fiso), and orientation dispersion index, were calculated. Tract-based spatial statistics was used in the voxel-wise statistical analysis. Post hoc analyses were performed for the quantification of the pre- to post-blast exposure diffusion percentage change in the WM regions with significant group difference and for the assessment of the interaction of the relationship between blast exposure and diffusion alteration. Results The non-collar group exhibited significant pre- to post-blast increase in NDI (corrected P &lt; .05) in the WM involving the right internal capsule, the right posterior corona radiation, the right posterior thalamic radiation, and the right sagittal stratum. A subset of these regions showed significantly greater alteration in NDI and fiso in the non-collar group when compared with those in the collar group (corrected P &lt; .05). In addition, collar wearing exhibited a significant moderating effect for the alteration of fiso for its association with average peak pulse pressure. Conclusions Our data provided initial evidence of the impact of blast exposure on WM diffusion alteration based on both DTI and NODDI. The mitigating effect of WM diffusivity changes and the moderating effect of collar wearing suggest that the device may serve as a promising solution to protect WM against blast exposure.


Sign in / Sign up

Export Citation Format

Share Document