scholarly journals Reconfigurable Multifunctional Ambipolar Polymer Transistors with Improved Switching-off Capability Upon Non-Uniformly Distributed Compensation Potential

2020 ◽  
Author(s):  
Peng Wei ◽  
Xudong Wang ◽  
Xianglong Li ◽  
Nan Qiao ◽  
Songyu Han ◽  
...  

Abstract Ambipolar field-effect transistors allowing both holes and electrons transport can work in different states, which are attractive for simplifying the device manufactures and miniaturizing the integrated circuits. However, conventional ambipolar transistors intrinsically suffer from poor switching-off capability because the gate electrode is not able to simultaneously deplete holes and electrons across the entire transport channel. Here, we show that the switching-off capability of polymer ambipolar transistor is largely improved by up to 3 orders, through introducing non-uniformly distributed compensation potentials along the channel to synchronically tune the charge transport at different channel locations. Non-uniformly gate-stressed conjugated-polymer@insulator blend film induces non-uniformly trapped charges in the insulators, which consequently generates non-uniform compensation electrical field imposed in the conjugated-polymers. Both n-type and p-type operations with high mobility (2.2 and 0.8 cm2s-1V-1 respectively) and high on/off ratio (105) are obtained in the same device, and the device states are reversibly switchable, which provides a new strategy for three-level non-volatile memories and artificial synapses.

Author(s):  
Tien Dat Ngo ◽  
Min Sup Choi ◽  
Myeongjin Lee ◽  
Fida Ali ◽  
Won Jong Yoo

A technique to form the edge contact in two-dimensional (2D) based field-effect transistors (FETs) has been intensively studied for the purpose of achieving high mobility and also recently overcoming the...


2016 ◽  
Vol 6 (2) ◽  
pp. 198-204 ◽  
Author(s):  
Dianzhong Wu ◽  
Zhiyong Zhang ◽  
Danhui Lv ◽  
Guoli Yin ◽  
Zhijian Peng ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C1552-C1552
Author(s):  
Venkatesha Hathwar ◽  
Mads Jørgensen ◽  
Mattia Sist ◽  
Jacob Overgaard ◽  
Bo Iversen ◽  
...  

In recent years, semiconducting organic materials have attracted a considerable amount of interest to develop all-organic or hybrid organic-inorganic electronic devices such as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), or photovoltaic cells. Rubrene (5,6,11,12-tetraphenyltetracene, RUB) is one of the most explored compound in this area as it has nearly 100% fluorescence quantum efficiency in solution. Additionally, the OFET fabricated by vacuum-deposited using orthorhombic rubrene single crystals show p-type characteristics with high mobility up to 20cm2/Vs (Podzorov et al., 2004). The large charge-carrier mobilities measured have been attributed to the packing motif (Fig a) which provides enough spatial overlap of the π-conjugated tetracene backbone. In the same time, RUB undergoes an oxidation in the presence of light to form rubrene endoperoxide (RUB-OX) (Fumagalli et al., 2011). RUB-OX molecules show electronic and structural properties strikingly different from those of RUB, mainly due to the disruption in the conjugate stacking of tetracene moieties. The significant semiconducting property of RUB is not clear yet. In this context, high resolution single crystal X-ray data of RUB (Fig b) and RUB-OX have been collected at 100K. Owing to the presence of weak aromatic stacking and quadrupolar interactions, the neutron single crystal data is also collected at 100K. The C-H bond distances and scaled anisotropic displacement parameters (ADP) of hydrogens from the neutron experiment are used in the multipolar refinements of electron density. The chemical bonding features (Fig c), the topology of electron density and strength of weak interaction are calculated by the Atoms in Molecules (AIM) theory (Bader, 1990). It is further supported by the source function description and mapping of non-covalent interactions based on the electron density. The detailed comparison of two organic semiconductors, RUB and RUB-OX will be discussed.


2021 ◽  
Vol 8 (8) ◽  
pp. 210554
Author(s):  
Lin Tao ◽  
Lixiang Han ◽  
Qian Yue ◽  
Bin Yao ◽  
Yujue Yang ◽  
...  

Carrier mobility is one of most important figures of merit for materials that can determine to a large extent the corresponding device performances. So far, extensive efforts have been devoted to the mobility improvement of two-dimensional (2D) materials regarded as promising candidates to complement the conventional semiconductors. Graphene has amazing mobility but suffers from zero bandgap. Subsequently, 2D transition-metal dichalcogenides benefit from their sizable bandgap while the mobility is limited. Recently, the 2D elemental materials such as the representative black phosphorus can combine the high mobility with moderate bandgap; however the air-stability is a challenge. Here, we report air-stable tellurium flakes and wires using the facile and scalable physical vapour deposition (PVD) method. The prototype field-effect transistors were fabricated to exhibit high hole mobility up to 1485 cm 2 V −1 s −1 at room temperature and 3500 cm 2 V −1 s −1 at low temperature (2 K). This work can attract numerous attentions on this new emerging 2D tellurium and open up a new way for exploring high-performance optoelectronics based on the PVD-grown p-type tellurium.


2018 ◽  
Vol 10 (35) ◽  
pp. 29824-29830 ◽  
Author(s):  
Gyeong G. Jeon ◽  
Myeongjae Lee ◽  
Jinwoo Nam ◽  
Wongi Park ◽  
Minyong Yang ◽  
...  

Author(s):  
H. Sirringhaus ◽  
N. Tessler ◽  
D. S. Thomas ◽  
P. J. Brown ◽  
R. H. Friend

2019 ◽  
Vol 6 (17) ◽  
pp. 1901978
Author(s):  
Soo‐Young Jang ◽  
In‐Bok Kim ◽  
Minji Kang ◽  
Zhuping Fei ◽  
Eunhwan Jung ◽  
...  

2001 ◽  
Vol 686 ◽  
Author(s):  
Minjoo L. Lee ◽  
Christopher W. Leitz ◽  
Zhiyuan Cheng ◽  
Arthur J. Pitera ◽  
Gianni Taraschi ◽  
...  

AbstractWe have fabricated strained Ge channel p-type metal oxide semiconductor field-effect transistors (p-MOSFETs) on Si1−xGex (x=0.7 to 0.9) virtual substrates. Capping the channel with a relaxed, epitaxial silicon layer eliminates the poor interface between silicon dioxide (SiO2) and pure Ge. The effects of the Si cap thickness, the strain in the Ge channel, and the thickness of the Ge channel on hole mobility enhancement were investigated. Optimized strained Ge p-MOSFETs show hole mobility enhancements of nearly 8 times that of co-processed bulk Si devices across a wide range of vertical field. These devices demonstrate that the high mobility holes in strained Ge can be utilized in a MOS device despite the need to cap the channel with a highly dislocated Si layer.


Sign in / Sign up

Export Citation Format

Share Document