scholarly journals Down-Regulating Hexokinase 2 Inhibits Proliferation of Endometrial Stromal Cells Through a Noncanonical Pathway Involving Phosphorylated-STAT1 in Endometriosis

Author(s):  
Shuhui Hou ◽  
Shating Lei ◽  
Haiyan Peng ◽  
Lichun Weng ◽  
Siji Lv ◽  
...  

Abstract Background: Endometriosis is a benign gynecologic disease that causes chronic pelvic pain, dysmenorrhea and infertility and shares several characteristics with malignant tumors, afflicting women of reproductive age. Hexokinase 2 (HK2) plays a pivotal role as the first rate-limiting enzyme in the metabolic glycolysis pathway, and its abnormal elevation in tumors is associated with tumor genesis and metastasis. However, the expression and role of HK2 in endometriosis remain unclear.Methods: We sequenced the primary endometrial stromal cells from patients with endometrioma and adopted immunohistochemistry, quantitative real-time PCR and western blot to determine the expression of HK2. Then wound healing assays, cell invasion assays, cell proliferation assays were performed to explore the functions of HK2 in endometrial stromal cells. Furthermore, mice models of endometriosis were recruited to observe the effects of HK2 inhibitors in vivo. Lastly, glycolysis metabolism detection and transcriptome sequencing were carried out in HK2-knockdown endometrial stromal cells to analyze the mechanism of HK2 affecting cell function.Results: Endometriotic stromal cells displayed active glycolysis metabolism and elevated expression of HK2. Downregulating HK2 reduced the migration, invasion and proliferation capacity of endometrial stromal cells. Knockdown of HK2 induced upregulation of signal transducer and activator of transcription 1 (STAT1) and their phosphorylation to attenuate the proliferation of endometrial stromal cells.Conclusions: HK2 was associated with the migration, invasion and proliferation of endometrial stromal cells, which might provide new insights into the pathogenesis and treatment of endometriosis.

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zhengyun Chen ◽  
Chunyan Wang ◽  
Cuicui Lin ◽  
Lifeng Zhang ◽  
Huimei Zheng ◽  
...  

Endometriosis is an estrogen-dependent chronic inflammatory disease that affects approximately 10% of women of reproductive age and up to 50% of women with infertility. The heterogeneity of the disease makes accurate diagnosis and treatment a clinical challenge. In this study, we generated two models of endometriosis: the first in rats and the second using human ectopic endometrial stromal cells (HEcESCs) derived from the lesion tissues of endometriosis patients. We then applied resveratrol to assess its therapeutic potential. Resveratrol intervention had significant efficacy to attenuate lesion size and to rectify aberrant lipid profiles of model rats. Lipidomic analysis revealed significant lipidomic alterations, including notable increases of sphingolipids and decreases of both glycerolipids and most phospholipids. Upon resveratrol application, both proliferation capacity and invasiveness parameters decreased, and the early apoptosis proportion increased for HEcESCs. The activation of PPARα was also noted as a factor potentially contributing to recovery from endometriosis in both models. Our study provides valuable insight into the mechanisms of resveratrol in endometriosis and therefore strengthens the potential for optimizing resveratrol treatment for this disease.


2001 ◽  
Vol 7 (S2) ◽  
pp. 580-581
Author(s):  
CA Witz ◽  
S Cho ◽  
VE Centonze ◽  
IA Montoya-Rodriguez ◽  
RS Schenken

Using human peritoneal explants, we have previously demonstrated that endometrial stromal cells (ESCs) and endometrial epithelial cells (EECs) attach to intact mesothelium. Attachment occurs within one hour and mesothelial invasion occurs within 18 hours (Figure 1). We have also demonstrated that, in vivo, the mesothelium overlies a continuous layer of collagen IV (Col IV).More recently we have used CLSM, to study the mechanism and time course of ESC and EEC attachment and invasion through mesothelial monolayers. in these studies, CellTracker® dyes were used to label cells. Mesothelial cells were labeled with chloromethylbenzoylaminotetramethylrhodamine (CellTracker Orange). Mesothelial cells were then plated on human collagen IV coated, laser etched coverslips. Mesothelial cells were cultured to subconfluence. ESCs and EECs, labeled with chloromethylfluorscein diacetate (CellTracker Green) were plated on the mesothelial monolayers. Cultures were examined at 1, 6, 12 and 24 hours with simultaneous differential interference contrast and CLSM.


1993 ◽  
Vol 13 (9) ◽  
pp. 5582-5592
Author(s):  
R J Nibbs ◽  
K Itoh ◽  
W Ostertag ◽  
P R Harrison

The ELM erythroleukemia is novel in that long-term survival of leukemic cells in culture (ELM-D cells) is dependent on contact with a bone marrow-derived stromal feeder cell layer. However, a number of stroma-independent (ELM-I) mutants that vary in their ability to differentiate in vitro in response to erythropoietin and interleukin-3 have been derived. We have attempted to define the genetic changes responsible for these different phenotypes. At the p53 locus in the primary leukemic cells, one copy of the gene has been lost whereas the other contains an 18-bp depletion, implicating its mutation as an early step in the development of the leukemia. Changes in ets gene expression have also been found. The Fli-1 gene region is rearranged in the primary tumor because of the insertion of a retrovirus inserted upstream of one Fli-1 allele, but this does not result in Fli-1 gene activation in any of the ELM-D or ELM-I cell lines except one. It seems significant that this line is the only one to have lost the ability to differentiate in response to erythropoietin. In addition, up-regulation of erg is associated with stromal cell-independent growth, since all ELM-I mutants have moderate levels of erg mRNA, whereas only low or undetectable levels are found in primary leukemic cells in vivo or in ELM-D cells in vitro. This up-regulation of erg mRNA seems to be important for stromal cell-independent growth, since ELM-D cells show elevated expression of the erg gene after separation from stromal cells. This seems to be made permanent in ELM-I mutants, since they do not down-regulate erg mRNA when grown in contact with stromal cells. We therefore propose that ets family members regulate both the survival and differentiation of erythroid cells.


2021 ◽  
Author(s):  
Jiju Wang ◽  
Yuhui Tang ◽  
Songcun Wang ◽  
Liyuan Cui ◽  
Da-Jin Li ◽  
...  

Previous studies have focused on the role of norepinephrine on arrhythmias, generalized anxiety disorder, and cancer. This study aimed to investigate the effect of norepinephrine on endometrial decidualization. Artificial decidualization and norepinephrine-treated mice were established in vivo. In vitro, human endometrial stromal cells were treated with MPA and cAMP to induce decidualization. Decidual markers and important signaling molecules during decidualization were detected using quantitative real-time polymerase chain reaction and Western blot. RNA sequencing was performed to determine related signaling pathways. Exposure of excess norepinephrine significantly restricted the induced expression of decidualized markers Dtprp, BMP2, WNT4, and Hand2 in mice. In vitro, 10 µM norepinephrine markedly downregulated the expressions of prolactin, IGFBP1, and PLZF, which are the specifical markers of decidual stromal cells during decidualization. The gene set enrichment analysis showed that a significant enrichment in neuroactive ligand–receptor interactions of norepinephrine treatment group. The α1b-adrenergic receptor expression was upregulated by norepinephrine. Interestingly, norepinephrine did not inhibit the expression of IGFBP1 in endometrial stromal cells after silencing α1b-adrenergic receptor, while significantly suppressed the induced decidualization with overexpression of α1b-adrenergic receptor. When α1b-adrenergic receptor was activated, endometrial p-PKC was significantly increased under post-treatment with norepinephrine in vivo and in vitro. In addition, norepinephrine treatment inhibited embryo and fetal development using a normal pregnancy model. Therefore, norepinephrine exposure inhibited endometrial decidualization through the activation of the PKC signaling pathway by upregulating α1b-adrenergic receptor. Our study could explain some female reproductive problems due to stress and provide some novel strategies for this disorder.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Moyer ◽  
D Dunj. Baston-Buest ◽  
G Wennemuth ◽  
A Bielfeld ◽  
R Grümmer

Abstract Study question Which compounds/compound combinations are most effective in decidualization induction of endometrial stromal cells (ESCs) of patients with and without endometriosis? Summary answer Combination of compounds addressing different steps in the signalling cascade of decidualization induce decidualization more effectively than application of the individual compounds alone. What is known already Decidualization is the monthly recurring differentiation process of the ESCs in preparation for embryo implantation in human. Undifferentiated ESCs reveal an increased potential to proliferate and invade after retrograde menstruation. This may lead to the formation of ectopic lesions and the manifestation of the chronic gynaecological disease of endometriosis due to an impairment of the decidualization process. Study design, size, duration Compounds and compound combinations addressing the progesterone receptor- or the cAMP-mediated pathway were evaluated with regard to their own and their synergistic potential to induce decidualization of ESCs from women with (n = 10) and without (n = 10) endometriosis during a 6-day treatment. Participants/materials, setting, methods Human primary ESCs were isolated via enzymatic-mechanic digestion from eutopic endometrium from women with and without endometriosis and treated for 6 days in vitro with different progestins (progesterone, medoxyprogesterone acetate (MPA)), 8-Br-cAMP, forskolin, or phosphodiesterase (PDE)-inhibitor (Rolipram) alone or in combination. The degree of decidualization induction was quantified by morphological, biochemical (prolactin) and molecular (HAND2, FOXO1) parameters by means of ELISA, flow cytometric analysis, Realtime PCR and Western blot analysis. Main results and the role of chance After 6 days of treatment, decidualization was induced by forskolin as well as by 8-Br-cAMP whereas progestins or PDE alone hardly induced prolactin secretion by ESCs as a marker of decidualization. A change of morphology from undifferentiated fibroblast-like cells to rounded cells could be observed in parallel with the secretion of prolactin. Forskolin and 8-Br-cAMP-induced decidualization was significantly enhanced by MPA but not by progesterone. These effects were similar in ESCs from women with and without endometriosis. Moreover, forskolin-induced decidualization was significantly enhanced by simultaneous application of PDE. Interestingly, this effect was higher in cells of patients with endometriosis. An induction of decidualization in ESCs was associated with a parallel increase of the process-associated transcription factors HAND2 and FOXO1. This rise of transcription was markedly increased in combination with MPA but not with progesterone. Limitations, reasons for caution Endometrial tissue was obtained from women undergoing infertility treatment and thus may differ from the endometrium of fertile women. Results obtained from primary cells in vitro may not cover the in vivo situation in all respects. Wider implications of the findings: The results of this study provide baseline data for the development of a possible therapeutical approach to induce decidualization as a treatment option for endometriosis. Further research is required to determine the effectiveness of the in vitro tested compound combinations in an in vivo model. Trial registration number Not applicable


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Moyer ◽  
D Dunja Baston-Buest ◽  
G Wennemuth ◽  
A Bielfeld ◽  
R Grümmer

Abstract Study question Which compounds/compound combinations are most effective in decidualization induction of endometrial stromal cells (ESCs) of patients with and without endometriosis? Summary answer Combination of compounds addressing different steps in the signalling cascade of decidualization induce decidualization more effectively than application of the individual compounds alone. What is known already Decidualization is the monthly recurring differentiation process of the ESCs in preparation for embryo implantation in human. Undifferentiated ESCs reveal an increased potential to proliferate and invade after retrograde menstruation. This may lead to the formation of ectopic lesions and the manifestation of the chronic gynaecological disease of endometriosis due to an impairment of the decidualization process. Study design, size, duration Compounds and compound combinations addressing the progesterone receptor- or the cAMP-mediated pathway were evaluated with regard to their own and their synergistic potential to induce decidualization of ESCs from women with (n = 10) and without (n = 10) endometriosis during a 6-day treatment. Participants/materials, setting, methods Human primary ESCs were isolated via enzymatic-mechanic digestion from eutopic endometrium from women with and without endometriosis and treated for 6 days in vitro with different progestins (progesterone, medoxyprogesterone acetate (MPA)), 8-Br-cAMP, forskolin, or phosphodiesterase (PDE)-inhibitor (Rolipram) alone or in combination. The degree of decidualization induction was quantified by morphological, biochemical (prolactin) and molecular (HAND2, FOXO1) parameters by means of ELISA, flow cytometric analysis, Realtime PCR and Western blot analysis. Main results and the role of chance After 6 days of treatment, decidualization was induced by forskolin as well as by 8-Br-cAMP whereas progestins or PDE alone hardly induced prolactin secretion by ESCs as a marker of decidualization. A change of morphology from undifferentiated fibroblast-like cells to rounded cells could be observed in parallel with the secretion of prolactin. Forskolin and 8-Br-cAMP-induced decidualization was significantly enhanced by MPA but not by progesterone. These effects were similar in ESCs from women with and without endometriosis. Moreover, forskolin-induced decidualization was significantly enhanced by simultaneous application of PDE. Interestingly, this effect was higher in cells of patients with endometriosis. An induction of decidualization in ESCs was associated with a parallel increase of the process-associated transcription factors HAND2 and FOXO1. This rise of transcription was markedly increased in combination with MPA but not with progesterone. Limitations, reasons for caution Endometrial tissue was obtained from women undergoing infertility treatment and thus may differ from the endometrium of fertile women. Results obtained from primary cells in vitro may not cover the in vivo situation in all respects. Wider implications of the findings The results of this study provide baseline data for the development of a possible therapeutical approach to induce decidualization as a treatment option for endometriosis. Further research is required to determine the effectiveness of the in vitro tested compound combinations in an in vivo model. Trial registration number not applicable


Reproduction ◽  
2021 ◽  
Author(s):  
Liyuan Cui ◽  
Feng Xu ◽  
Songcun Wang ◽  
Zhuxuan Jiang ◽  
Lu Liu ◽  
...  

Deficient decidualization of endometrial stromal cells (ESCs) can cause adverse pregnancy outcomes including miscarriage, intrauterine growth restriction and pre-eclampsia. Decidualization is regulated by multiple factors such as hormones and circadian genes. Melatonin, a circadian-controlled hormone, is reported to be important for various reproductive process, including oocyte maturation and placenta development. Its receptor, MT1, is considered to be related to intrauterine growth restriction and pre-eclampsia. However, the role of melatonin-MT1 signal in decidualization remains unknown. Here, we reported that decidual stromal cells from miscarriages displayed deficient decidualization with decreased MT1 expression. The expression level of MT1 is gradually increased with the process of decidualization induction in vitro. MT1 knockdown suppressed decidualization level, while overexpression of MT1 promoted the decidualization process. Moreover, changing MT1 level could regulate the expression of decidualization-related transcription factor FOXO1. Melatonin promoted decidualization and reversed the decidualization deficiency due to MT1 knockdown. Using in vitro and in vivo experiments, we further identified that lipopolysaccharide (LPS) could induce inflammation and decidualization resistance with downregulated MT1 expression, and melatonin could reverse the inflammation and decidualization resistance induced by LPS. These results suggested melatonin-MT1 signal might be essential for decidualization and might provide a novel therapeutic target for decidualization deficiency-associated pregnancy complications.


2019 ◽  
Author(s):  
Alice Luddi ◽  
Camilla Marrocco ◽  
Laura Governini ◽  
Bianca Semplici ◽  
Valentina Pavone ◽  
...  

Abstract STUDY QUESTION Are selective markers for the neuronal differentiation such as microtubule-associated protein 2 (MAP-2) and synaptophysin (SYP) as well as the nerve growth factor (NGF) expressed by fibroids, myometrium and eutopic endometrium? SUMMARY ANSWER Neuronal markers NGF, MAP-2 and SYP are highly expressed in fibroids compared with matched myometrium, and this neurogenic pathway is upregulated by tumor necrosis factor (TNF) alpha in cultured smooth muscle cells (SMCs). WHAT IS KNOWN ALREADY Uterine fibroids or leiomyomas are the most common benign tumors, accounting for approximately one-third of hysterectomies. The present trend is to improve the medical treatment avoiding surgery, also for fertility sparing; hence, the pathogenic mechanisms are investigated, aiming to develop new therapeutic strategy. STUDY DESIGN, SIZE, DURATION This laboratory-based case–control study is focused on fibroids and myometrial specimens obtained between 2015 and 2017 from 15 women of reproductive age at the proliferative phase of the menstrual cycle. Leiomyomas, matched myometrium and endometrium from each woman were analyzed. Control endometrium was obtained from women undergoing surgery for ovarian cyst (n = 15). PARTICIPANTS/MATERIALS, SETTING, METHODS qRT-PCR, western blotting and immunostaining were applied to evaluate the expression of neurogenic markers; the effects of TNF on NGF, MAP-2 and SYP expression in cultured SMCs from leiomyomas and matched myometrium were analyzed. MAIN RESULTS AND THE ROLE OF CHANCE qRT-PCR analyses using tissues from clinical patients showed that the levels of NGF, MAP-2 and SYP mRNA were significantly higher in uterine leiomyomas compared with their matched myometrium (P < 0.05), whereas only NGF was significantly increased in eutopic endometrium compared with healthy endometrium. In primary SMCs, isolated from fibroids or from the adjacent myometrium, NGF, MAP-2 and SYP mRNA expression were significantly increased by TNF treatment (P < 0.05). Finally, human endometrial stromal cells prepared from the endometrium of patients affected by uterine fibroids display higher TNF expression (P < 0.001). LIMITATIONS, REASONS FOR CAUTION qRT-PCR analysis and immunofluorescence validation are robust methods demonstrating a clear upregulation of neurogenic factors in leiomyomas, even though additional studies are needed to establish a correlation between increased neuronal gene expression and degree of pain, as well as the involvement of inflammation mediators in the development of the neurogenic unhinge. Therefore, more in vivo studies are needed to confirm the results achieved from primary cultured SMCs. WIDER IMPLICATIONS OF THE FINDINGS The increased expression of neurogenic factors in uterine fibroids and endometrium may contribute to explain the painful stimuli. Accordingly, these neurogenic pathways may represent potential therapeutic avenues to treat the fibroid-related disorders. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by research grants from the University of Siena. The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER N/A.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Per Anderson ◽  
Elena Gonzalez-Rey ◽  
Francisco O’Valle ◽  
Francisco Martin ◽  
F. Javier Oliver ◽  
...  

Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS). Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs) in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs) suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS-) induced maturation of dendritic cells (DCs) in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG) E2 in this process. In vivo, early administration of murine and human ASCs (hASCs) ameliorated myelin oligodendrocyte protein- (MOG35-55-) induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+) DCs in draining lymph nodes (DLNs). In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function.


Sign in / Sign up

Export Citation Format

Share Document