scholarly journals Biosynthesis of 3D/2D Ceo2/Mos2 Nanocomposites with Enhanced Photocatalytic Activity to Degrade Organic Dye in Wastewater and Statistical Optimization of Reaction Parameters

Author(s):  
Yogesh Sharma ◽  
Mohammad Ahmed Khan ◽  
Thangapandi Chellapandi ◽  
Magdum Tejas Sukumar ◽  
Gunabalan Madhumitha ◽  
...  

Abstract Nanocomposites synthesized by alternative approaches like biosynthetic methods are safer than those prepared by traditional chemical techniques. Further, this approach is both economically and environmentally feasible. In this study, we report an eco-friendly methodology for preparing cerium dioxide/molybdenum disulphide (CeO2/MoS2) nanocomposites. Moringa oleifera peel was used as the reducing/stabilizing agent for synthesizing CeO2 nanoparticles. The prepared nanocomposite were characterized using FT-IR analysis, SEM and EDAX analysis, TEM and SAED pattern analysis, X-Ray Diffraction Pattern, Zeta Potential, UV-Visible Diffuse Reflectance Spectra, X-Ray Photon Spectroscopy and Photoluminescence spectra. Particle size and morphology were characterized by TEM and SEM. The photocatalytic pursuit of CeO2/MoS2 was explored by the degradation of methyl violet (MV) under visible light irradiation. Our methodology proved to be 96.25% effective in the degradation of MV. Further, we used this Response Surface Methodology for enhancing the process factors like volume of photocatalyst, time for degradation and concentration of MV.

2016 ◽  
Vol 35 (10) ◽  
pp. 1017-1019 ◽  
Author(s):  
Hamideh Seyghalkar ◽  
Mohammad Sabet ◽  
Masoud Salavati-Niasari

AbstractIn this work, a simple thermal decompose method was served to synthesize NiS2 nanostructures via a nickel complex. Also polyethylene glycol (PEG) was used as surfactant to increase the steric effect around nanostructure surfaces and decrease the particles size. The product was characterized with different analysis methods. The crystal structure of the product was studied by X-ray diffraction (XRD) pattern. The particle size and morphology were investigated by scanning electron microscopy (SEM). To study the nanostructures surface purity, Fourier transform infrared spectroscopy (FT-IR) was used. And finally to study the optical properties of the product photoluminescence (PL) spectroscopy was served.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Tae-Hyun Kim ◽  
Hyoung Jun Kim ◽  
Jae-Min Oh

We have successfully intercalated 2-aminoethanesulfonate, a well-known biomolecule taurine, into calcium-containing layered double hydroxides via optimized solid phase intercalation. According to X-ray diffraction patterns and infrared spectroscopy, it was revealed that the intercalated taurine molecules were each directly coordinated to other calcium cation and arranged in a zig-zag pattern. Scanning electron microscopy showed that the particle size and morphology of the LDHs were not affected by the solid phase intercalation, and the surface of intercalates was covered by organic moieties. From ninhydrin amine detection tests, we confirmed that most of the taurine molecules were well stabilized between the calcium-containing LDH layers.


2014 ◽  
Vol 602-603 ◽  
pp. 19-22 ◽  
Author(s):  
Lin Qiang Gao ◽  
Hai Yan Chen ◽  
Zhen Wang ◽  
Xin Zou

Nanoscale LiTaO3 powders with perovskite structure were synthesized using the solvothermal technique with glycol as solvent at 240°C for 12h. The powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD was used to elucidate room temperature structures using Rietveld refinement. The powders were pure single pervoskite phase with high crystallinity. FESEM and TEM were used to determine particle size and morphology. The average LiTaO3 grain size was estimated to be < 200nm, and TEM images indicated that LiTaO3 particles had a brick-like morphology. In addition, the effect of the temperature on the LiTaO3 power characterisitics was also detailed studied.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4187
Author(s):  
Huifang Xie ◽  
Xin Ma ◽  
Wenbin Lin ◽  
Shiting Dong ◽  
Qiang Liu ◽  
...  

In the current study, linear dextrin (LD) was prepared using waxy potato starch debranched with pullulanase, which has attracted immense interest in the food, pharmaceutical, and cosmetic industries as a versatile ingredient. Various LDs were separated on the basis of their differential solubility in aqueous/ethanol solutions of different volumetric ratios. Three LD products—LD Fabrications with 40% ethanol (F-40); LD Fabrications with 50% ethanol (F-50); and LD Fabrications with 60%, 70%, and 80% ethanol (F-M)—were obtained with an average degree of polymerization (DP) values of 31.44, 21.84, and 16.10, respectively. The results of Fourier transform infrared spectroscopy (FT-IR) analysis revealed that the reaction mainly involved hydrogen bonding and a hydrophobic interaction between LD and insulin in the process of inclusion complex formation. X-ray diffraction (XRD) results indicated that insulin was encapsulated in LD. The results of circular dichroism (CD) showed that the changes in the secondary structure of insulin were negligible during the release from the inclusion complexes. The order of encapsulation capacity is as follows: the complex composed of F-M and insulin (F-M-INS) > the complex composed of LD and insulin (LD-INS) > the complex composed of F-50 and insulin (F-50-INS) > and the complex composed of F-40 and insulin (F-40-INS). F-M-INS inclusion complexes showed a better effect on reducing the release of insulin in gastric juice and promoting the release of insulin in intestinal juice and blood plasma than LD-INS.


2016 ◽  
Vol 35 (2) ◽  
pp. 215-220
Author(s):  
Zahra Asgari-Fard ◽  
Mohammad Sabet ◽  
Masoud Salavati-Niasari

AbstractStrontium carbonate (SrCO3) nanostructures were synthesized via simple hydrothermal method by Sr(NO3)2, ethylenediamine and hydrazine as reagents. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). Different parameter’s effects on the product size and morphology were investigated. It was found that reagent concentration, reaction time and temperature play key roles in morphology of the obtained product.


2013 ◽  
Vol 634-638 ◽  
pp. 2218-2221
Author(s):  
Xiu Hui Zhu ◽  
Jian Zhen Liu ◽  
Tian Ai ◽  
Hong Mei Yu

CuS nanochains were prepared via a simple hydrothermal reaction at 140 °C for 12 h, employing Cu(Ac)2•H2O and Thiourea as reactants in the absence of any structure-directing agent. The size and morphology of CuS nanochains were characterized by means of X-ray diffraction (XRD) and Transmission electron microscope (TEM); the optical properties of CuS nanochains were investigated by UV–vis absorption spectrum and Fourier transform infrared (FT-IR) measurements. CuS nanochains were found to be constructed by covellite CuS with a hexagonal phase and composed of nanorods with 40-100 nm length and 25 nm Width. The UV–vis absorption of CuS was observed an increased absorption from 300nm to 650 nm and the band gap of CuS nanochains was 1.91 eV.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Mohsen Ahmadipour ◽  
K. Venkateswara Rao ◽  
V. Rajendar

Mg(x)Fe(1-x)O(magnesiowustite) nanopowder samples synthesized by solution-combustion method and fuel to oxidizer ratio (Ψ=1,1.25) are used as a control parameter to investigate how particle size and morphology vary withΨ. The method is inexpensive and efficient for synthesis of oxide nanoparticles. The average crystallite size ofMg(x)Fe(1-x)Onanoparticles was estimated from the full-width-half maximum of the X-ray diffraction peaks of powders using Debye-Scherrer’s formula; the average crystallite size varies from 16 nm to 51 nm. From X-ray diffraction analysis, it was observed thatMg(x)Fe(1-x)Onanoparticles have cubic structure. The particle size measured by particle size analyzer ranges from 37.7 nm to 73 nm which is in the order of XRD results. Thermal analysis was done by thermal gravimetric-differential thermal analyzer. The particle size and morphology of the synthesized powder were examined by transmission electron microscope and scanning electron microscope. The crystal size and particle size were compared with some of the most recently published research works by XRD and TEM. FTIR conforms formation of theMg(x)Fe(1-x)O.


2014 ◽  
Vol 592-594 ◽  
pp. 112-116 ◽  
Author(s):  
Kondaiah Gudimetla ◽  
B. Chaithanyakrushna ◽  
K. Chandra Sekhar ◽  
Balasubramanian Ravisankar ◽  
S. Kumaran

In this present work the elemental powders pertaining to composition of Al5083 alloy was milled using planetary ball mill (Insmart systems) for 20 h. The elemental powders are loaded in HSS vial with 10:1 ball to powder ratio at 250 RPM. Various parameters such as crystalline size, particle size and morphology have studied using X-ray diffraction analysis and scanning electron microscopy. The crystallite size of the powders determined using Williamson Hall analysis of XRD is 23 nm after 20 h of milling. These nanocrystalline Al-5083 alloy powders were consolidated using ECAP with and without application of back pressure. Physical and mechanical properties such as density and hardness values were measured for sintered and unsintered samples.


2015 ◽  
Vol 1120-1121 ◽  
pp. 132-136
Author(s):  
Pavel Novikov ◽  
Alexey Silin ◽  
Qing Sheng Wang ◽  
Anatoliy Popovich

A phase-pure cathode material (Li2Fe0.5Mn0.5SiO4/C) was successfully prepared by a solid-state reaction. Initially, components used amorphous Li2SiO3obtained from a liquid phase by solidification, FeC2O4*2H2O, MnC2O4*2H2O and glucose as a carbon source. The structure of the prepared cathode material was investigated by X-ray diffraction (XRD), the content of Fe, Mn, Si by Energy-dispersive X-ray spectroscopy (EDX) method, Li content by atomic absorption spectroscopy (AAS), the particle size and morphology by scanning electron microscopy (SEM). XRD data show that the sample on the basis of orthorhombic unit cell can be attributed to Pmn21space group. An analysis of SEM images showed average particles size of about 250 nm. Other results obtained (EDX, AAS) correspond approximately to the theoretical data. Electrochemical performance of the cathode material was gained from cycling between 1.5-4.8V. Discharge capacity after the first cycle reached 220 mAh/g.


2015 ◽  
Vol 830-831 ◽  
pp. 63-66 ◽  
Author(s):  
Kondaiah Gudimetla ◽  
Ganesh Varma Jampana ◽  
S. Ramesh Kumar ◽  
Balasubramanian Ravisankar ◽  
S. Kumaran

In this present study Al-5083 alloy powders were prepared from elemental powders using high energy ball milling under optimized milling parameters. Various properties such as crystalline size, particle size and morphology have been studied using X-Ray diffraction analysis and Scanning Electron Microscopy. It was found that Al-5083 alloy was formed and nanocrystalline size particles were achieved. These nanocrystalline Al-5083 alloy powders were consolidated using equal channel angular pressing with and without application of back pressure. Physical and mechanical properties such as density and hardness are studied.


Sign in / Sign up

Export Citation Format

Share Document