scholarly journals The Effects of Suillus Luteus Inoculation on Rhizospheric Fungal Community Diversity and Structure of Pinus Massoniana in Mining Area

2020 ◽  
Author(s):  
Peiyi Yu ◽  
Chen Ning ◽  
Jingzhen Chen ◽  
Fan Zhu ◽  
Airong Shen ◽  
...  

Abstract BackgroundAs important decomposers and plant symbionts, soil fungal communities play a major role in remediating heavy metal polluted soils. However, diversity and structure of fungal communities generally remain unclear in mining area. This study aimed to assess the rhizospheric fungal community composition of masson’s pine (Pinus massoniana) in lead-zinc mining area of Suxian district, Hunan Province, China. The experiment was treated as three ways: masson’s pine inoculated with or without Suillus luteus and bulk soil without plant as control. ResultsThe results showed that the inoculation of ectomycorrhizal fungi could enlarge the plants’ capability to absorb heavy metals and secrete soil enzymes. The richness and diversity of fungi in rhizospheric soil were significantly higher than bulk soil (p<0.05), but no obvious difference between rhizospheric soils inoculated with and without ectomycorrhizal (ECM) fungi while the community structure was changed. The rhizospheric fungi belong to 6 phylum, 25 classes, 65 orders, 115 families and 150 genera and the dominant phyla were Chytridiomycota (50.49%), Ascomycota (38.54%), and Basidiomycota (9.02%). By using LEfSe and heatmap, the relative abundance of Suillus, Paraglomus, Agaricus, and Tulasnella were the highest with ECM fungi inoculation. Redundant analysis (RDA) showed that the community structure significantly changed with ECM fungi inoculation, which was significantly related to soil water content, carbon nitrogen ratio, bulk density, available potassium, and soil enzymes. ConclusionsAll together, the inoculation with ECM fungi may change the inhabit environment of microorganisms and the dominant fungi in soil, which provided a screening of keystone species in the heavy metal-contaminated mining area.

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 719
Author(s):  
Xiangjun Li ◽  
Wensi Kang ◽  
Size Liu ◽  
Haifeng Yin ◽  
Qian Lyu ◽  
...  

Ectomycorrhizal (ECM) fungi can form symbioses with plant roots, which play an important role in regulating the rhizosphere microenvironment. As a broad-spectrum ECM tree species, Pinus massoniana forms symbiotic relationship called mycorrhiza with various ECM fungal species. In this study, four types of forests were selected from a 38-year-old Pinus plantation in eastern Sichuan, namely, pure P. massoniana forest (MC), P. massoniana mixed with Cunninghamia lanceolata forest (MS), P. massoniana–Cryptomeria fortunei forest (ML), and P. massoniana–broadleaved forest (MK), the species mixture ratio of all forests was 1:1. The ITS2 segment of ECM root tip sequenced by high-throughput sequencing using the Illumina MiSeq sequencing platform. (1) The ECM fungi of these four P. massoniana forests showed similar dominant genera but different relative abundances in community structure during the three seasons. (2) The alpha diversity index of ECM fungi was significantly influenced by season and forest type. (3) Soil pH, soil organic matter (SOM), total nitrogen (TN), C/N ratio, and total phosphorus (TP) influenced the ECM fungal community structure in different seasons. In summary, there were significant differences in ECM fungal communities among different forest types and different seasons; the colonization rate of ECM fungal in P. massoniana–Cunninghamia lanceolata was the highest, so we infer that Cunninghamia lanceolata is the most suitable tree species for mixed with P. massoniana in three mixture forests.


Botany ◽  
2021 ◽  
Author(s):  
Juliana S Medeiros ◽  
Michael A Mann ◽  
Jean H. Burns ◽  
Sarah Kyker ◽  
David Burke

Rhododendron are popular ornamental plants which are well-known for forming mycorrhizal associations with ericoid fungi, but little is known about how host traits influence their microbiome more broadly. This study investigated leaf, root, rhizosphere soil, and bulk soil bacterial and fungal community structure for 12 Rhododendron species, representing four taxonomic clades with different leaf habits. Samples were collected when ephemeral hair roots colonized by ericoid mycorrhizae were absent, and microbial community structure was compared to leaf and root morphology for the same plants. Root morphology and the fungal communities of roots and rhizosphere soil were primarily structured by host ancestry. Leaf bacterial and fungal communities were even more distinct across clades than for roots or rhizosphere, and microbial communities of leaves and bulk soil were similarly structured by clade-wise differences in leaf morphology, suggesting a role for Rhododendron leaf litter in belowground microbial community structure. This work sheds new light on host traits influencing microbial community structure of ericaceous plants, showing a strong influence of ancestry, but also that different host traits drive bacterial and fungal communities across different plant compartments, suggesting future work on factors that drive similarity among close relatives in the non-ericoid microbes associating with Rhododendron.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1113
Author(s):  
Xiaolong Lin ◽  
Zongmu Yao ◽  
Xinguang Wang ◽  
Shangqi Xu ◽  
Chunjie Tian ◽  
...  

Rice is a staple food for the world’s population. However, the straw produced by rice cultivation is not used sufficiently. Returning rice straw to the field is an effective way to help reduce labor and protect the soil. This study focused on the effect of water-covered depth with the freeze–thaw cycle on rice straw decomposition and the soil fungal community structure in a field in Northeast China. The field and controlled experiments were designed, and the fungal ITS1 region was tested by high-throughput sequencing for analyzing the fungal communities in this study. The results showed that water coverage with the freeze–thaw cycle promoted the decomposition of rice straw and influenced the fungal community structure; by analyzing the network of the fungal communities, it was found that the potential keystone taxa were Penicillium, Talaromyces, Fusarium, and Aspergillus in straw decomposition; and the strains with high beta-glucosidase, carboxymethyl cellulase, laccase, lignin peroxidase, and manganese peroxidase could also be isolated in the treated experiment. Furthermore, plant pathogenic fungi were found to decrease in the water-covered treatment. We hope that our results can help in rice production and straw return in practice.


2020 ◽  
Author(s):  
Chuanbo Zhang ◽  
Chao-Hui Ren ◽  
Yan-Li Wang ◽  
Qi-Qi Wang ◽  
Yun-Sheng Wang ◽  
...  

Abstract Background The fungal communities inhabiting natural Ophiocordyceps sinensis play critical ecological roles in alpine meadow ecosystem, contribute to infect host insect, influence the occurrence of O. sinensis, and are repertoire of potential novel metabolites discovery. However, a comprehensive understanding of fungal communities of O. sinensis remain elusive. Therefore, the present study aimed to unravel fungal communities of natural O. sinensis using combination of high-throughput sequencing and culture-dependent approach. Results A total of 280,519 high-quality sequences, belonging to 5 fungal phyla, 15 classes, 41 orders, 79 families, 112 genera, and 352 putative operational taxonomic units (OTUs) were obtained from natural O. sinensis using high-throughput sequencing. Among of which, 43 genera were identified in external mycelial cortices (EMC), Ophiocordyceps, Sebacinia, Archaeorhizomyces were predominant genera with the abundance of 95.86%, 1.14%, 0.85%, respectively. Total 66 genera were identified from soil microhabitat, Inocybe, Archaeorhizomyces, Unclassified Thelephoraceae, Tomentella, Thelephora, Sebacina, Unclassified Ascomycota, Unclassified Fungi were predominant genera with an average abundance of 53.32%, 8.69%, 8.12%, 8.12%, 7.21%, 4.6%, 3.08% and 3.05%, respectively. The fungal communities in external mycelial cortices (EMC) were significantly distinct from the soil microhabitat (Soil). Meanwhile, seven culture media that benefit for the growth of O. sinensis were used to isolate culturable fungi at 16 °C, resulted in 77 fungal strains isolated for rDNA ITS sequence analysis, belonging to 33 genera, including Ophiocordyceps, Trichoderma, Cytospora, Truncatella, Dactylonectria, Isaria, Cephalosporium, Fusarium, Cosmospora, Paecilomyces, etc.. Among all culturable fungi, Mortierella and Trichoderma were predominant genera of total isolates. Conclusions The significantly distinction and overlap in fungal community structure between two approaches highlight that integration of approaches would generate more information than either of them. Our finding is the first investigation of fungal community structure of natural O. sinensis by two approachs, provide new insight into O. sinensis associated fungi, and support that microbiota of O. sinensis is an untapped source for novel bioactive metabolites discovery.


2020 ◽  
Vol 96 (7) ◽  
Author(s):  
Michael E Van Nuland ◽  
Dylan P Smith ◽  
Jennifer M Bhatnagar ◽  
Artur Stefanski ◽  
Sarah E Hobbie ◽  
...  

ABSTRACT The response to global change by soil microbes is set to affect important ecosystem processes. These impacts could be most immediate in transitional zones, such as the temperate-boreal forest ecotone, yet previous work in these forests has primarily focused on specific subsets of microbial taxa. Here, we examined how bacterial and fungal communities respond to simulated above- and below-ground warming under realistic field conditions in closed and open canopy treatments in Minnesota, USA. Our results show that warming and canopy disturbance shifted bacterial and fungal community structure as dominant bacterial and fungal groups differed in the direction and intensity of their responses. Ectomycorrhizal and saprotrophic fungal communities with greater connectivity (higher prevalence of strongly interconnected taxa based on pairwise co-occurrence relationships) were more resistant to compositional change. Warming effects on soil enzymes involved in the hydrolytic and oxidative liberation of carbon from plant cell walls and nutrients from organic matter were most strongly linked to fungal community responses, although community structure–function relationships differed between fungal guilds. Collectively, these findings indicate that warming and disturbance will influence the composition and function of microbial communities in the temperate-boreal ecotone, and fungal responses are particularly important to understand for predicting future ecosystem functioning.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258227
Author(s):  
Tonny P. Tauro ◽  
Florence Mtambanengwe ◽  
Shensi Mpepereki ◽  
Paul Mapfumo

Recent advocacy for Integrated Soil Fertility Management (ISFM) in smallholder farming systems in east and southern Africa show substantial evidence of increased and sustained crop yields associated with enhanced soil productivity. However, the impact ISFM on soil fungi has received limited attention, yet fungi play key roles in crop growth. Following total soil DNA extraction with ZR soil microbe miniprep kit, illumina sequencing was used to, examine the fungal communities (ITS1F) under a maize crop following co-application of organic nutrient resources including Crotalaria juncea, cattle manure and maize stover with inorganic fertilizers at three-time periods (T1-December, T2-January, and T3-February) in Zimbabwe. Ninety-five fungal species were identified that were assigned to Ascomycota (>90%), Basidiomycota (7%) and Zygomycota (1%). At T1, Ascomycota and Basidiomycota were identified across treatments, with Ascomycota attaining > 93% frequency. Fungal succession was noted and involved reduction of Ascomycota coupled by increase in Basidiomycota under the different treatments. For example at T3, Basidiomycota increased to 34% while Ascomycota declined to 66% under manure but remained unchanged in other two organics. Pre-season mineral nitrogen (N) associated with the ‘Birch effect’ apparently influenced the fungal community structure at T1 while readily available fertilizer N was critical at T2 and T3. The low-quality maize stover promoted the presence of Exophiala sp SST 2011 and this was linked to N immobilization. The impact of N addition was more pronounced under medium (manure) to low-quality (maize stover) resources. Fungi required phosphorus (P) and N for survival while their proliferation was dependent on substrate availability linked to resource quality. Interactive-forward test indicated that soil available P and N were most influential (P < 0.05) factors shaping fungal communities. Co-application of medium to high quality organic and inorganic resources show promise as a sustainable entry point towards enhancing belowground fungal diversity critical in driving nutrient supply.


MycoKeys ◽  
2021 ◽  
Vol 81 ◽  
pp. 45-68
Author(s):  
Peter Meidl ◽  
Brendan Furneaux ◽  
Kassim I. Tchan ◽  
Kerri Kluting ◽  
Martin Ryberg ◽  
...  

Forests and woodlands in the West African Guineo-Sudanian transition zone contain many tree species that form symbiotic interactions with ectomycorrhizal (ECM) fungi. These fungi facilitate plant growth by increasing nutrient and water uptake and include many fruiting body-forming fungi, including some edible mushrooms. Despite their importance for ecosystem functioning and anthropogenic use, diversity and distribution of ECM fungi is severely under-documented in West Africa. We conducted a broad regional sampling across five West African countries using soil eDNA to characterize the ECM as well as the total soil fungal community in gallery forests and savanna woodlands dominated by ECM host tree species. We subsequently sequenced the entire ITS region and much of the LSU region to infer a phylogeny for all detected soil fungal species. Utilizing a long read sequencing approach allows for higher taxonomic resolution by using the full ITS region, while the highly conserved LSU gene allows for a more accurate higher-level assignment of species hypotheses, including species without ITS-based taxonomy assignments. We detect no overall difference in species richness between gallery forests and woodlands. However, additional gallery forest plots and more samples per plot would have been needed to firmly conclude this pattern. Based on both abundance and richness, species from the families Russulaceae and Inocybaceae dominate the ECM fungal soil communities across both vegetation types. The community structure of both total soil fungi and ECM fungi was significantly influenced by vegetation types and showed strong correlation within plots. However, we found no significant difference in fungal community structure between samples collected adjacent to different host tree species within each plot. We conclude that within plots, the fungal community is structured more by the overall ECM host plant community than by the species of the individual host tree that each sample was collected from.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Saiyaremu Halifu ◽  
Xun Deng ◽  
Jun Zhang ◽  
Jiangbao Xia ◽  
Xiaoshuang Song ◽  
...  

In this study, pot experiments were conducted on the seedlings of Pinus sylvestris var. mongolica to study the influence of Trichoderma (Trichoderma harzianum E15) and Ectomycorrhizal fungi (Suillus luteus N94) on the growth of these seedlings. In particular, the effects of these fungi on the fungal community structure in the rhizosphere soil of the seedlings were investigated. Inoculation with Trichoderma harzianum E15 and Suillus luteus N94 significantly (P < 0.05) promoted the growth of the Pinus sylvestris seedlings. The non-metric multidimensional scaling (NMDS) results indicated a significant difference (P < 0.05) between the fungal community structures in the rhizosphere soil of the annual and biennial seedlings. In the rhizosphere soil of annual seedlings, the main fungi were Ascomycota, Basidiomycota, Zygomycota. Ascomycota, Basidiomycota, Mortierellomycota, and p-unclassified-k-Fungi were the main fungi in the rhizosphere soil of biennial seedlings. The dominant genus in the rhizosphere soil and a key factor promoting the growth of the annual and the biennial seedlings was Trichoderma, Suillus, respectively. Both of them were negatively correlated with the relative abundance of microbial flora in the symbiotic environment. Trichoderma had a significant promoting effect on the conversion of total phosphorus, total nitrogen, ammonium nitrogen, nitrate nitrogen, and the organic matter in the rhizosphere soil of the seedlings, while Suillus significantly promoted the conversion of organic matter and total phosphorus.


Sign in / Sign up

Export Citation Format

Share Document