scholarly journals Biofilm of Klebsiella Pneumoniae Minimize Phagocytosis and Cytokine Expression by Macrophage Cell Line

Author(s):  
Sudarshan Singh Rathore ◽  
Lalitha Cheepurupalli ◽  
Jaya Gangwar ◽  
Thiagarajan Raman ◽  
jayapradha Ramakrishnan

Abstract Infectious bacteria in biofilm mode is involved in many persistent infections. Owing to its importance in clinical settings, many in vitro and in vivo studies are being conducted to study the structural and functional properties of biofilms, their drug resistant mechanism and survival mechanism of planktonic and biofilm cells. In this regard, there is not sufficient information on the interaction between Klebsiella biofilm and macrophages. In this study, we have made an attempt to unravel the interaction between Klebsiella biofilm and macrophages in terms of phagocytic response and cytokine expression. In vitro phagocytosis assays was performed for heat inactivated and live biofilms of K. pneumoniae, together with the expression analysis of TLR2, iNOS, inflammatory cytokines such as IL-β1, IFN-γ, IL-6, IL-12, IL-4, TNF-α and anti-inflammatory cytokines, IL-10. A phagocytic rate of an average of 15% was observed against both heat inactivated and live biofilms, when LPS+IFN-γ activated macrophages were used. This was significantly higher than non-activated macrophages when tested against heat inactivated and live biofilms (average 8%). Heat-inactivated and live biofilms induced similar phagocytic response and up-regulation of pro-inflammatory genes in macrophages, indirectly conveying that macrophage response is to some extent dependent on the biofilm matrix.

2019 ◽  
Author(s):  
Sudarshan Singh Rathore ◽  
Lalitha Cheepurupalli ◽  
Jaya Gangwar ◽  
Thiagarajan Raman ◽  
Jayapradha Ramakrishnan

AbstractInfectious bacteria in biofilm mode are involved in many of persistent infections. Owing to its importance in clinical settings many in vitro and in vivo studies have analysed the structural and functional properties of biofilm, its resistance to antibiotic exposure etc. Currently the immune mechanism toward the clearance of biofilm infections is being investigated. K. pneumoniae is one of the major leading causes of biofilm infections on indwelling medical devices. There was no previous literature that demonstrates the interactions of macrophage cells lines and Klebsiella biofilm, as the first report, we investigated the in vitro response of Klebsiella biofilm to phagocytosis and cytokine expression. We developed an in vitro model to study the interactions of Kebsiella biofilm and macrophage. The phagocytosis assay was performed for heat inactivated and live biofilm. A similar phagocytic response against both biofilms were observed when these cells were exposed to RAW 264.7 macrophages. Also, the expressions of TLR2, iNOS, inflammatory cytokines such as IL-β1, IFN-γ, IL-6, IL-12, IL-4, TNF-α and anti-inflammatory cytokines, IL-10 during phagocytosis were analysed. These results collectively demonstrated that the rate of phagocytosis was an average of 15% for both biofilms. Also, when activated macrophage was exposed to heat-inactivated or live biofilms, there was a significant increase in proinflammatory cytokine genes together with expected increase in TLR2 and iNOS. Thus, it is clear that macrophage response against biofilm producing K. pneumoniae results in increase in phagocytic rate and a corresponding increase in inflammatory cytokine gene expression which could be important for clearing K. pneumoniae cells.


Author(s):  
Bruna Lima Correa ◽  
Nadia El Harane ◽  
Ingrid Gomez ◽  
Hocine Rachid Hocine ◽  
José Vilar ◽  
...  

Abstract Aims The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. Methods and results Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. Conclusions EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.


2000 ◽  
Vol 68 (6) ◽  
pp. 3587-3593 ◽  
Author(s):  
Patricia A. Darrah ◽  
Mary K. Hondalus ◽  
Quiping Chen ◽  
Harry Ischiropoulos ◽  
David M. Mosser

ABSTRACT Rhodococcus equi is a facultative intracellular bacterium of macrophages which can infect immunocompromised humans and young horses. In the present study, we examine the mechanism of host defense against R. equi by using a murine model. We show that bacterial killing is dependent upon the presence of gamma interferon (IFN-γ), which activates macrophages to produce reactive nitrogen and oxygen intermediates. These two radicals combine to form peroxynitrite (ONOO−), which kills R. equi. Mice deficient in the production of either the high-output nitric oxide pathway (iNOS−/−) or the oxidative burst (gp91 phox−/− ) are more susceptible to lethalR. equi infection and display higher bacterial burdens in their livers, spleens, and lungs than wild-type mice. These in vivo observations, which implicate both nitric oxide (NO) and superoxide (O2 −) in bacterial killing, were reexamined in cell-free radical-generating assays. In these assays, R. equi remains fully viable following prolonged exposure to high concentrations of either nitric oxide or superoxide, indicating that neither compound is sufficient to mediate bacterial killing. In contrast, brief exposure of bacteria to ONOO− efficiently kills virulent R. equi. The intracellular killing of bacteria in vitro by activated macrophages correlated with the production of ONOO− in situ. Inhibition of nitric oxide production by activated macrophages by usingN G-monomethyl-l-arginine blocks their production of ONOO− and weakens their ability to control rhodococcal replication. These studies indicate that peroxynitrite mediates the intracellular killing of R. equiby IFN-γ-activated macrophages.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1626-1626
Author(s):  
Dror Mevorach ◽  
Veronique Amor ◽  
Yehudith Shabat

Abstract Background: Chimeric antigen receptor (CAR)-modified T cells with specificity against CD19 have demonstrated dramatic promise against highly refractory hematologic malignancies. Clinical responses with complete remission rates as high as 90% have been reported in children and adults with relapsed/refractory acute lymphoblastic leukemia (ALL). However, very significant toxicity has been observed and as many as 30% in average developing severe forms of CRS and possibly related neurotoxicity. CRS is occurring due to large secretion of pro-inflammatory cytokines, mainly from macrophages/monocytes, and resembles macrophage-activating syndrome and hemophagocytosis in response to CAR T-secreting IFN-g and possibly additional cytokines. To better understand the mechanisms leading to CRS and to treat or prevent it, we have developed in vitro and in vivo models of CRS with and without CAR-modified T cells. Early apoptotic cells that have been successfully tested for the prevention of acute GVHD, including in 7 ALL patients, were tested in these models for their effect on cytokines and CAR T cell cytotoxicity. Methods: CD19-expressing HeLa cells were used alone or with co-incubation with human macrophages for in vitro experiments and intraperitoneal experiments. Raji was used in vivo for leukemia induction. LPS and IFN-γ were used to trigger additional cytokine release. CD19-specific CAR-modified cells were used (ProMab) for anti-tumor effect against CD19-bearing cells. Cytotoxicity assay was examined in vivo using 7-AAD with flow cytometry and in vitro by survival curves and analysis of tumor load in bone marrow and liver. CRS occurred spontaneously or in response to LPS and IFN-γ. Mouse IL-10, IL-1β, IL-2, IP-10, IL-4, IL-5, IL-6, IFNα, IL-9, IL-13, IFN-γ, IL-12p70, GM-CSF, TNF-α, MIP-1α, MIP-1β, IL-17A, IL-15/IL-15R, and IL-7, as well as 32 human cytokines were evaluated by Luminex technology using the MAPIX system analyzer (Mereck Millipore) and MILLIPLEX Analyst software (Merek Millipore). Mouse IL-6Rα, MIG (CXCL9), and TGF-β1 were evaluated by Quantikine ELISA (R&D systems). Bone marrow and liver were evaluated using flow cytometry and immunohistochemistry. The IFN-γ effect was evaluated by STAT1 phosphorylation and biological products. Human macrophages and dendritic cells were generated from monocytes. Early apoptotic cells were produced as shown in GVHD clinical trial; at least 50% of cells were annexin V-positive and less than 5% were PI-positive. Results: Apoptotic cells had no negative effect in vitro or in vivo on CAR-modified T cells with specificity against CD19. There were comparable E/T ratios for CAR T in the presence or absence of apoptotic cells in vitro, and comparable survival curves in vivo. On the other hand, significant downregulation (p<0.01) of pro-inflammatory cytokines, including IL-6, IP-10, TNF-a, MIP-1α, MIP-1β, was documented. IFN-γ was not downregulated, but its effect on macrophages and dendritic cells was inhibited at the level of phosphorylated STAT1 and IFN-γ-induced expression of CXCL10 and CXCL9 was reduced. Conclusion: CRS evolves from several factors, including tumor biology, interaction with monocytes/macrophages/dendritic cells, and as a response to the CAR T cell effect and expansion. Apoptotic cells decrease pro-inflammatory cytokines that originate from innate immunity and inhibit the IFN-γ effect on monocyte/macrophages/ dendritic cells without harming IFN-γ levels or CAR-T cytotoxicity. Disclosures Mevorach: Enlivex: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Amor:Enlivex: Employment. Shabat:Enlivex: Employment.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Inthirai Somasuntharam ◽  
Sheridan Carroll ◽  
Milton Brown ◽  
Andres Garcia ◽  
Michael Davis

Heart failure is the leading cause of death in the developed world and myocardial infarction (MI) is the most common cause. Macrophages are key cells that orchestrate the initial inflammatory as well as later stage wound healing responses following MI. These functions are carried out by pro-inflammatory (M1) and reparative (M2) macrophages respectively. Optimal healing response after MI requires a balancing act of the biphasic macrophage response, so as to not prolong inflammatory signals detrimental to wound healing. Taking advantage of the fact that interleukin-4 (IL-4) activates macrophages towards M2, we hypothesize that delivering IL-4 to the post-MI heart can alter the ratio of M2 to M1 macrophages in the infarct area and induce a better healing response. In this study, we validate our approach in vitro and perform in vitro optimization of a suitable delivery system. RAW 264.7 macrophages were stimulated with IL-4 (10ng/uL) or LPS/IFN-γ (100ng/mL and 10ng/mL) for 24h and gene expression markers (qPCR) and Nitric Oxide (NO) levels (Griess assay) analyzed as indication of M1or M2 activation. Mouse aortic endothelial cells were treated with conditioned media from these cells for 24h and tube formation assessed on matrigel. A bioactive, protease-cleavable polyethylene glycol (PEG) hydrogel delivery system was evaluated for release of functional IL-4 to LPS-activated macrophages. Empty or IL-4 encapsulating hydrogel was placed on a trans-well above LPS-stimulated macrophages. Collagenase I at 0.1mg/mL was applied over 48h to degrade the gels and release IL-4 (n≥3 and p<0.05 considered significant by one-way ANOVA). We demonstrate that IL-4 significantly upregulates M2 markers (MRC-1 and Arg-1) while IFN-γ and LPS upregulate M1 markers (NO and TNF-alpha). We observe enhanced tube density in endothelial cells treated with M2 media while M1 inhibited tube formation. Hydrogel release study shows a significant reduction in NO levels of LPS-stimulated macrophages when IL-4 is released, demonstrating that IL-4 is released from the gel in its bioactive form. In conclusion, we show that macrophages can indeed respond to changing stimuli and adopt distinct activation types and our PEG based hydrogel could be a potential delivery system for in vivo IL-4 delivery.


Author(s):  
Eun-Mi Noh ◽  
Jeong-Mi Kim ◽  
Hak Yong Lee ◽  
Hyun-Kyung Song ◽  
Sang Ok Joung ◽  
...  

Abstract Background Platycodon grandiflorum is a flowering plant that is used in traditional medicine for treating pulmonary and respiratory disorders. It exerts various pharmacological effects, including immunomodulatory and anti-cancer activities. The purpose of this study was to confirm the in vitro and in vivo immune-enhancing effects of P. grandiflorum extract (PGE) on splenocytes isolated from cyclophosphamide (CP)-induced immunosuppressed rats. Methods For in vitro analysis, splenocytes were treated with PGE at various doses along with CP. Cell viability was measured by a WST-1 assay, and NK cell activity and cytotoxic T lymphocyte (CTL) activity was also examined. In addition, immunoglobulin A (IgA), IgG, and cytokine levels were measured. For in vivo analysis, Sprague Dawley rats were treated with various doses of PGE along with CP. Complete blood count (CBC) was performed, and plasma levels of IgA, IgG, TNF-α, IFN-γ, IL-2, and IL-12 were quantified. Additionally, tissue damage was assessed through histological analyses of the thymus and spleen. Results PGE treatment enhanced cell viability and natural killer cell and cytotoxic T lymphocyte activity, and increased the production of CP-induced inflammatory cytokines (TNF-α, IFN-γ, IL-2, and IL-12) and immunoglobulins (IgG and IgA) in splenocytes. In addition, in CP-treated rats, PGE treatment induced the recovery of white blood cell, neutrophil, and lymphocyte counts, along with mid-range absolute counts, and increased the serum levels of inflammatory cytokines (TNF-α, IFN-γ, IL-2, and IL-12) and immunoglobulins (IgG and IgA). Moreover, PGE attenuated CP-induced spleen and thymic damage. Conclusions Our results confirmed that PGE exerts an immune-enhancing effect both in vitro and in vivo, suggesting that PGE may have applications as a component of immunostimulatory agents or as an ingredient in functional foods.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xuemin Jin ◽  
Xue Bai ◽  
Ying Zhao ◽  
Zijian Dong ◽  
Jianda Pang ◽  
...  

Trichinella spiralis induced alternative activated macrophages (M2), leading to protect against Crohn’s disease, known as Th1 –related inflammation, which enhances oxidative stress in the host. However, the relationship of oxidative stress and T. spiralis –mediated immune response is still unknown. In our study, we showed that nuclear factor erythroid 2-related factor-2 (Nrf2), a key transcription factor in antioxidant, participated in M2 polarization induced by T. spiralis muscle larval excretory/secretory (ES) products in vitro. ES –treated M2 were injected intravenously after TNBS challenge and we demonstrated that ES-M could alleviate the severity of the colitis in mice. Adoptive transfer of ES –treated M2 decreased the level of IFN-γ and increased the levels of IL-4 and IL-10 in vivo. However, the capacity of ES –treated Nrf2 KO macrophages to treat colitis was dramatically impaired. ES –treated Nrf2 KO macrophages was insufficient to result in the elevated levels of IL-4 and IL-10. These findings indicate that Nrf2 was required for M2 polarization induced by T. spiralis ES to alleviate colitis in mice.


2013 ◽  
Vol 150 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Mohammad Hossein Boskabady ◽  
Sakine Shahmohammadi Mehrjardi ◽  
Abadorrahim Rezaee ◽  
Houshang Rafatpanah ◽  
Sediqeh Jalali

2020 ◽  
Vol 35 (3) ◽  
pp. 233-238
Author(s):  
Muflihatul Muniroh

AbstractThe exposure of methylmercury (MeHg) has become a public health concern because of its neurotoxic effect. Various neurological symptoms were detected in Minamata disease patients, who got intoxicated by MeHg, including paresthesia, ataxia, gait disturbance, sensory disturbances, tremors, visual, and hearing impairments, indicating that MeHg could pass the blood-brain barrier (BBB) and cause impairment of neurons and other brain cells. Previous studies have reported some expected mechanisms of MeHg-induced neurotoxicity including the neuroinflammation pathway. It was characterized by the up-regulation of numerous pro-inflammatory cytokines expression. Therefore, the use of anti-inflammatories such as N-acetyl-l-cysteine (NAC) may act as a preventive compound to protect the brain from MeHg harmful effects. This mini-review will explain detailed information on MeHg-induced pro-inflammatory cytokines activation as well as possible preventive strategies using anti-inflammation NAC to protect brain cells, particularly in in vivo and in vitro studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Jo Rademacher ◽  
Anahi Cruz ◽  
Mary Faber ◽  
Robyn A. A. Oldham ◽  
Dandan Wang ◽  
...  

AbstractInterleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.


Sign in / Sign up

Export Citation Format

Share Document