scholarly journals A Microbial Tale of Farming, Invasion and Conservation: On the Gut Bacteria of European and American Mink in Western Europe

Author(s):  
Pauline ML Van Leeuwen ◽  
Albrecht I Schulte-Hostedde ◽  
Christine Fournier-Chambrillon ◽  
Pascal Fournier ◽  
Lise-Marie Pigneur ◽  
...  

Abstract One of the threats that the critically endangered European mink (Mustela lutreola) faces throughout its relict range, including the occidental population, is the impact of the American mink (Mustela vison) invasion in its natural habitat. We aimed to explore the differences in microbiota and genetic diversity between European and American mink to test phylosymbiosis theory. We investigated the gut microbiota composition of European and American mink in a controlled environment (captive breeding compounds and fur farms respectively) to account for the impact of the environment on gut bacterial composition. We compared them to the gut microbiota of both mink species in the natural environment across multiple habitats. Our exploratory results showed differences between free-ranging and captive individuals, with more extreme changes in American mink compared to European mink. However, feral American mink from a long-established population exhibited gut bacterial composition closer to the free-ranging native species compared to more recently established feral populations. This result could be explained by dietary shifts in the area sampled based on prey availability through different landscape, but also to a lesser extent due to greater genetic differentiation. This exploratory work contributes to the scarce literature currently available on the dynamics between gut microbiota and mammal invasion.

2017 ◽  
Vol 95 (6) ◽  
pp. 443-451 ◽  
Author(s):  
Jeff Bowman ◽  
Kaela Beauclerc ◽  
A. Hossain Farid ◽  
Heather Fenton ◽  
Cornelya F.C. Klütsch ◽  
...  

Farmed American mink (Neovison vison (Schreber, 1777)) pose a risk to biodiversity owing to escape and release from farms. Feral mink may affect native species in locations where American mink are not endemic, such as Europe. In contrast, escaping domestic mink may hybridize with wild mink in North America, leading to introgression of domestic traits via hybrid-mediated gene flow. We tested this idea in eastern Canada, which has a history of mink farming. We sampled known domestic and free-ranging mink, and profiled 508 individuals at 15 microsatellite loci. We found that 33% of free-ranging mink were either escaped domestic individuals, domestic–wild hybrids, or were introgressed to domestic or wild parental groups. The greatest prevalence of free-ranging domestic, hybrid, or introgressed mink (59%) occurred in Nova Scotia, which also had the most mink farms. Historic (1980s or earlier) mink sampled from museums had higher allelic richness and private allelic richness than contemporary wild mink. Domestic mink are artificially selected for traits desired by farmers, and as such, introgression with wild mink may lead to a loss of local adaptation. Our findings demonstrate that continued escape and release of mink could pose risks to the maintenance of genetic integrity in wild mink.


2021 ◽  
Author(s):  
Pauline ML van Leeuwen ◽  
Albrecht I. Schulte-Hostedde ◽  
Christine Fournier-Chambrillon ◽  
Carmen M. Aranda ◽  
Laurie Berthomieu ◽  
...  

Abstract Host’s fitness can be affected by its genotype and gut microbiota, defined as the microbes living in the host’s intestinal tract. This study explored how the genetic diversity of the host influences its bacterial communities in the context of captive breeding programs, for the critically endangered European mink (Mustela lutreola). As stated by the ecosystem on a leash model, loss of host genetic diversity may lead to changes in immunomodulation and will therefore induce modifications of the gut microbiota. We investigated variation in the gut bacteria through 16S rRNA metabarcoding, related to the genetic diversity of European mink held in captivity in two breeding centers representing separate breeding stocks originating from the western and eastern populations. The genetic diversity of the host was assessed through diversity analysis of the adaptive MHC class I and II genes as well as neutral microsatellite markers. Results indicate lower diversity in neutral and MHC class I genes for the western population, and the opposite for MHC class II. A lower MHC class II gene variability led to an increase in microbial phylogenetic diversity and in abundance depending on the presence of specific MHC-II motifs. Those results seem to be linked to management practices that differs between the two programs, especially the number of generations in captivity. Long term Ex situ conservation practices can thus modulate gut microbial communities, that might potentially have consequences on the survival of reintroduced animals. We suggest strategies to foster genetic diversity in captive breeding program to mitigate the effects of genetic drift on those small, isolated populations.


2021 ◽  
Vol 9 (11) ◽  
pp. 2358
Author(s):  
Wang Zhang ◽  
Fengjie Liu ◽  
Yang Zhu ◽  
Runhua Han ◽  
Letian Xu ◽  
...  

Spiders are a key predator of insects across ecosystems and possess great potential as pest control agents. Unfortunately, it is difficult to artificially cultivate multiple generations of most spider species. Since gut bacterial flora has been shown to significantly alter nutrient availability, it is plausible that the spiders’ microbial community plays a key role in their unsuccessful breeding. However, both the gut microbial composition and its influencing factors in many spiders remain a mystery. In this study, the gut microbiota of Campanicola campanulata, specialists who prey on ants and are widely distributed across China, was characterized. After, the impact of diet and diet-associated bacteria on gut bacterial composition was evaluated. First, two species of prey ants (Lasius niger and Tetramorium caespitum) were collected from different locations and fed to C. campanulata. For each diet, we then profiled the nutritional content of the ants, as well as the bacterial communities of both the ants and spiders. Results showed that the protein and carbohydrate content varied between the two prey ant species. We isolated 682 genera from 356 families in the ants (dominant genera including Pseudomonas, Acinetobacter, Paraburkholderia, Staphylococcus, and Novosphingobium), and 456 genera from 258 families in the spiders (dominated by Pseudomonas). However, no significant differences were found in the gut microbiota of spiders that were fed the differing ants. Together, these results indicate that nutritional variation and diet-associated bacterial differences have a limited impact on the microbial composition of spider guts, highlighting that spiders may have a potentially stable internal environment and lay the foundation for future investigations into gut microbiota.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1387
Author(s):  
Karla García ◽  
Carola Sanpera ◽  
Lluís Jover ◽  
Santiago Palazón ◽  
Joaquim Gosálbez ◽  
...  

The pressure elicited by invasive species on native species significantly increases with the increase of the overlap of their ecological niches. Still, the specific mechanisms of the trophic displacement of native species during the invasion process are unclear. The effects of the invasive American mink (Neovison vison) on the critically endangered European mink (Mustela lutreola) was assessed by analyses of diet and niche overlap during the invasion process. To do this, the isotopic composition (δ13C and δ15N) of both species of mink and their four main types of prey was analysed. Significant trophic overlap between the native European mink and invasive American mink was found when they coexisted in sympatry. Furthermore, both mink species were characterised by significant individual variation in diet and no obvious change in diet of the native species in response to the arrival of the introduced species was observed. High niche overlap registered between both species in sympatry with no displacement in diet of the native mink in response to the arrival of the invasive mink is expected to have important consequences for the viability and conservation of the native mink populations, as it suggests high competitive pressure.


2020 ◽  
Vol 13 (2) ◽  
pp. 205-215 ◽  
Author(s):  
R. Sausset ◽  
M. A. Petit ◽  
V. Gaboriau-Routhiau ◽  
M. De Paepe

AbstractThe intestinal microbiota plays important roles in human health. This last decade, the viral fraction of the intestinal microbiota, composed essentially of phages that infect bacteria, received increasing attention. Numerous novel phage families have been discovered in parallel with the development of viral metagenomics. However, since the discovery of intestinal phages by d’Hérelle in 1917, our understanding of the impact of phages on gut microbiota structure remains scarce. Changes in viral community composition have been observed in several diseases. However, whether these changes reflect a direct involvement of phages in diseases etiology or simply result from modifications in bacterial composition is currently unknown. Here we present an overview of the current knowledge in intestinal phages, their identity, lifestyles, and their possible effects on the gut microbiota. We also gather the main data on phage interactions with the immune system, with a particular emphasis on recent findings.


2020 ◽  
Author(s):  
Sara G. Higarza ◽  
Silvia Arboleya ◽  
Jorge L. Arias ◽  
Miguel Gueimonde ◽  
Natalia Arias

Abstract Background: Non-alcoholic steatohepatitis (NASH) is one of the most prevalent diseases worldwide. A high-fat, high-cholesterol (HFHC) diet leads to an early NASH model. It has been suggested that gut microbiota mediates the effects of diet through the microbiota-gut-brain axis, modifying the host’s brain metabolism and disrupting cognition.Results: Here, we target NASH-induced cognitive damage by testing the impact of environmental enrichment (EE) and the administration of either Lacticaseibacillus rhamnosus GG (LGG) or Akkermansia muciniphila CIP107961 (AKK). EE and AKK, but not LGG, reverse the HFHC-induced cognitive dysfunction, including impaired spatial working memory and novel object recognition; however, whereas AKK restores brain metabolism, EE produces an overall decrease. Moreover, AKK and LGG did not induce major rearrangements in the intestinal microbiota, with only slight changes in bacterial composition and diversity, whereas EE entailed an increase in Firmicutes and Verrucomicrobia members.Conclusions: Our findings illustrate the interplay between gut microbiota, the host’s brain energy metabolism, and cognition, and they suggest intervention strategies, such as the administration of AKK, for the management of the cognitive dysfunction related to NASH.


Ecography ◽  
2002 ◽  
Vol 25 (3) ◽  
pp. 295-302 ◽  
Author(s):  
D. W. Macdonald ◽  
V. E. Sidorovich ◽  
E. I. Anisomova ◽  
N. V. Sidorovich ◽  
P. J. Johnson

2021 ◽  
Author(s):  
Wang Zhang ◽  
Fengjie Liu ◽  
Yang Zhu ◽  
Runhua Han ◽  
Letian Xu ◽  
...  

Abstract Spiders are a key predator of insects across ecosystems and possess great potential as pest control agents. Unfortunately, it is difficult to artificially cultivate multiple generations of most spider species. Since gut bacterial flora has been shown to significantly alter nutrient availability, it is plausible that the spiders’ microbial community play a key role in their unsuccessful breeding. However, both the gut microbial composition and its influencing factors in many spiders remain a mystery. In this study, the gut microbiota of Campanicola campanulata, specialist prey on ants and are widely distributed across China, was characterized. After, the impact of diet and diet-associated bacteria on gut bacterial composition was evaluated. First, two species of prey ants (Lasius niger and Tetramorium caespitum) were collected from different locations and fed to C. campanulata. For each diet, we then profiled the nutritional content of the ants, as well as the bacterial communities of both the ants and spiders. Results showed that the protein and carbohydrate content varied between the two prey ant species, and that the bacterial communities of the ants were clearly delineated by collection site. However, no significant differences were found in the gut microbiota of spiders that were fed the differing ants. Together, these results indicate that nutritional variation and diet-associated bacterial differences have a limited impact on the microbial composition of spider guts, suggesting that spiders have a mechanism keeping their gut bacterial community stable to ensure normal physiological function and development.


Sign in / Sign up

Export Citation Format

Share Document