scholarly journals Association of Sequence types, Antimicrobial Resistance and Virulence Genes in India isolates of Klebsiella pneumoniae: A Comparative Genomics Study

Author(s):  
Abhirami Krishnamoorthy Sundaresan ◽  
Keerthana Vincent ◽  
Ganesh Babu Malli Mohan ◽  
Jayapradha Ramakrishnan

Abstract Klebsiella pneumoniae is an important ESKAPE pathogen that causes sepsis, urinary tract infections, peritonitis, intraabdominal abscesses and upper respiratory infections. The strains exhibiting multidrug resistance and hypervirulence are priority pathogens for which immediate treatment and dissemination prevention strategies are required. The hypervirulent drug resistant K. pneumoniae is associated with high mortality rates. Numbers of environmental strains also have acquired virulence genes. Hence to gain a better understanding of the spread of antimicrobial resistant genes across the country over 10 years and to delineate environmental and clinical K. pneumoniae, a comparative genomics investigation was made. This is the first comparative genomic study using India isolates of K. pneumoniae, which includes publicly available WGS of 144 clinical and 9 environmental strains collected during 2010–2020. The blaCTX-M-15 was widely distributed in clinical isolates since 2013 and increased over time from 5 % to 30 %. The co-existence of blaNDM and blaOXA was observed in 22 % of clinical strains. Diverse serotypes were found among the 153 K. pneumoniae isolates, of which, K51 (28%) and K64 (21.56%) were majorly found. Most of the K51 isolates belong to ST231 (93.02 %). And more than 50% of KL51 strains were found to have both rmpA and magA. The number of associated virulence genes (rmpA, magA, entB, ybtS, iutA, alls,) appeared to be higher in ST231-KL51 and ST23-KL1 isolates. Of greatest concern, these virulence genes are observed in environmental strains aswell. More than 97% of clinical strains have ybtS, iutA genes. Importantly, 98% of ESBL and 62% of carbapenamase isolates harbored ybtS, iutA and rmpA, magA respectively. The IncF conjugative plasmids are predominant in K. pneumoniae, which contribute to the spread of antimicrobial resistant and virulence genes. The increasing trend in hypervirulent strains was observed from 2017. The phylogenetic analysis separates the environmental from clinical strains and is characterized by uncommon STs and serotypes. Thus, the study illustrates the K. pneumoniae genomic surveillance in India representing the phylogenetic evolution, STs, AMR, virulence, serotype to provide more attention for immediate treatment and preventing the dissemination of K. pneumoniae.

2021 ◽  
Author(s):  
Abhirami Krishnamoorthy Sundaresan ◽  
Keerthana Vincent ◽  
Ganesh Babu Malli Mohan ◽  
Jayapradha Ramakrishnan

Abstract Klebsiella pneumoniae is an important ESKAPE pathogen that causes sepsis, urinary tract infections, peritonitis, intraabdominal abscesses and upper respiratory infections. The strains exhibiting multidrug resistance and hypervirulence are priority pathogens for which immediate treatment and dissemination prevention strategies are required. The hypervirulent drug resistant K. pneumoniae is associated with high mortality rates. Numbers of environmental strains also have acquired virulence genes. Hence to gain a better understanding of the spread of antimicrobial resistant genes across the country over 10 years and to delineate environmental and clinical K. pneumoniae, a comparative genomics investigation was made. This is the first comparative genomic study using India isolates of K. pneumoniae, which includes publicly available WGS of 144 clinical and 9 environmental strains collected during 2010–2020. The blaCTX-M-15 was widely distributed in clinical isolates since 2013 and increased over time from 5 % to 30 %. The co-existence of blaNDM and blaOXA was observed in 22 % of clinical strains. Diverse serotypes were found among the 153 K. pneumoniae isolates, of which, K51 (28%) and K64 (21.56%) were majorly found. Most of the K51 isolates belong to ST231 (93.02 %). And more than 50% of KL51 strains were found to have both rmpA and magA. The number of associated virulence genes (rmpA, magA, entB, ybtS, iutA, alls,) appeared to be higher in ST231-KL51 and ST23-KL1 isolates. Of greatest concern, these virulence genes are observed in environmental strains aswell. More than 97% of clinical strains have yersinibactin (ybtS), aerobactin (iutA) genes. Importantly, 98% of ESBL and 62% of carbapenamasen isolates harboured ybtS, iutA and rmpA, magA respectively. The IncF conjugative plasmids are predominant in K. pneumoniae, which contribute to the spread of AMR, and virulence genes. The increasing trend in hypervirulent strains was observed from 2017. The phylogenetic analysis separates the environmental from clinical strains and is characterized by uncommon STs and serotypes. Thus, the study illustrates the K. pneumoniae genomic surveillance in India representing the phylogenetic evolution, STs, AMR, virulence, serotype to provide more attention for immediate treatment and preventing the dissemination of K. pneumoniae.


2021 ◽  
Author(s):  
Abhirami Krishnamoorthy Sundaresan ◽  
Keerthana Vincent ◽  
Ganesh Babu Malli Mohan ◽  
Jayapradha Ramakrishnan

Abstract Klebsiella pneumoniae is an important ESKAPE pathogen that causes sepsis, urinary tract infections, peritonitis, intraabdominal abscesses and upper respiratory infections. The strains exhibiting multidrug resistance and hypervirulence are priority pathogens for which immediate treatment and dissemination prevention strategies are required. The hypervirulent drug resistant K. pneumoniae is associated with high mortality rates. Numbers of environmental strains also have acquired virulence genes. Hence to gain a better understanding of the spread of antimicrobial resistant genes across the country over 10 years and to delineate environmental and clinical K. pneumoniae, a comparative genomics investigation was made. This is the first comparative genomic study using India isolates of K. pneumoniae, which includes publicly available WGS of 144 clinical and 9 environmental strains collected during 2010–2020. The blaCTX-M-15 was widely distributed in clinical isolates since 2013 and increased over time from 5 % to 30 %. The co-existence of blaNDM and blaOXA was observed in 22 % of clinical strains. Diverse serotypes were found among the 153 K. pneumoniae isolates, of which, K51 (28%) and K64 (21.56%) were majorly found. Most of the K51 isolates belong to ST231 (93.02 %). And more than 50% of KL51 strains were found to have both rmpA and magA. The number of associated virulence genes (rmpA, magA, entB, ybtS, iutA, alls,) appeared to be higher in ST231-KL51 and ST23-KL1 isolates. Of greatest concern, these virulence genes are observed in environmental strains aswell. More than 97% of clinical strains have ybtS, iutA genes. Importantly, 98% of ESBL and 62% of carbapenamase isolates harbored ybtS, iutA and rmpA, magA respectively. The IncF conjugative plasmids are predominant in K. pneumoniae, which contribute to the spread of antimicrobial resistant and virulence genes. The increasing trend in hypervirulent strains was observed from 2017. The phylogenetic analysis separates the environmental from clinical strains and is characterized by uncommon STs and serotypes. Thus, the study illustrates the K. pneumoniae genomic surveillance in India representing the phylogenetic evolution, STs, AMR, virulence, serotype to provide more attention for immediate treatment and preventing the dissemination of K. pneumoniae.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 318
Author(s):  
Bernardo Sachman-Ruiz ◽  
Luis Lozano ◽  
José J. Lira ◽  
Grecia Martínez ◽  
Carmen Rojas ◽  
...  

Cattle babesiosis is a socio-economically important tick-borne disease caused by Apicomplexa protozoa of the genus Babesia that are obligate intraerythrocytic parasites. The pathogenicity of Babesia parasites for cattle is determined by the interaction with the host immune system and the presence of the parasite’s virulence genes. A Babesia bigemina strain that has been maintained under a microaerophilic stationary phase in in vitro culture conditions for several years in the laboratory lost virulence for the bovine host and the capacity for being transmitted by the tick vector. In this study, we compared the virulome of the in vitro culture attenuated Babesia bigemina strain (S) and the virulent tick transmitted parental Mexican B. bigemina strain (M). Preliminary results obtained by using the Basic Local Alignment Search Tool (BLAST) showed that out of 27 virulence genes described and analyzed in the B. bigemina virulent tick transmitted strain, only five were fully identified in the attenuated laboratory strain. In all cases, the identity and coverture of the identified genes of the wildtype strain were higher than those of the laboratory strain. This finding is putatively associated with the continuous partial loss of virulence genes in the laboratory strain after several passages of the parasite population under optimal in vitro growth conditions. The loss of virulence factors might be reflected in the absence of symptoms of the disease in cattle inoculated with the attenuated strain despite the presence of infection in the bovine host cells.


2020 ◽  
Vol 9 (33) ◽  
Author(s):  
Saswati Biswas ◽  
Indranil Biswas

ABSTRACT Here, we report the complete genome sequence of Streptococcus mutans strain MD, which produces potent mutacins capable of inhibiting streptococci. MD is a relatively uncharacterized strain whose genome information was unavailable. This study provides useful information for comparative genomic study and for understanding the repertoire of mutacins in S. mutans.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 265 ◽  
Author(s):  
Oksana Lukjancenko ◽  
Martin Christen Thomsen ◽  
Mette Voldby Larsen ◽  
David Wayne Ussery

PanFunPro is a tool for pan-genome analysis that integrates functional domains from three Hidden Markov Models (HMM) collections, and uses this information to group homologous proteins into families based on functional domain content. We use PanFunPro to compare a set of Lactobacillus and Streptococcus genomes. The example demonstrates that this method can provide analysis of differences and similarities in protein content within user-defined sets of genomes. PanFunPro can find various applications in a comparative genomic study, starting with the basic comparison of newly sequenced isolates to already existing strains, and an estimation of shared and specific genomic content. Furthermore, it can potentially be used in the determination of target sequences for in silico bacterial identification, as well as for epidemiological studies.


mBio ◽  
2021 ◽  
Author(s):  
Laura N. Rusche

Candida auris is an emerging fungal pathogen that is thermotolerant and often resistant to standard antifungal treatments. To trace its evolutionary history, the Sanyal lab conducted a comparative genomic study focusing on the positions of centromeres in C. auris and eight other species from the Clavispora / Candida clade of yeasts (A.


2016 ◽  
Author(s):  
B. Jesse Shapiro ◽  
Inès Levade ◽  
Gabriela Kovacikova ◽  
Ronald K. Taylor ◽  
Salvador Almagro-Moreno

AbstractSome microbes can transition from an environmental lifestyle to a pathogenic one1–3. This ecological switch typically occurs through the acquisition of horizontally acquired virulence genes4,5. However, the genomic features that must be present in a population prior to the acquisition of virulence genes and emergence of pathogenic clones remain unknown. We hypothesized that virulence adaptive polymorphisms (VAPs) circulate in environmental populations and are required for this transition. We developed a comparative genomic framework for identifying VAPs, using Vibrio cholerae as a model. We then characterized several environmental VAP alleles to show that, while some of them reduced the ability of clinical strains to colonize a mammalian host, other alleles conferred efficient host colonization. These results show that VAPs are present in environmental bacterial populations prior to the emergence of virulent clones. We propose a scenario in which VAPs circulate in the environment, they become selected and enriched under certain ecologicalconditions, and finally a genomic background containing several VAPs acquires virulence factors that allows for its emergence as a pathogenic clone.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0258019
Author(s):  
Ishtiaque Ahammad ◽  
Mohammad Uzzal Hossain ◽  
Anisur Rahman ◽  
Zeshan Mahmud Chowdhury ◽  
Arittra Bhattacharjee ◽  
...  

As the COVID-19 pandemic continues to ravage across the globe and take millions of lives and like many parts of the world, the second wave of the pandemic hit Bangladesh, this study aimed at understanding its causative agent, SARS-CoV-2 at the genomic and proteomic level and provide precious insights about the pathogenesis, evolution, strengths and weaknesses of the virus. As of Mid-June 2021, over 1500 SARS-CoV-2 genomesequences have been deposited in the GISAID database from Bangladesh which were extracted and categorized into two waves. By analyzing these genome sequences, it was discovered that the wave-2 samples had a significantly greater average rate of mutation/sample (30.79%) than the wave-1 samples (12.32%). Wave-2 samples also had a higher frequency of deletion, and transversion events. During the first wave, the GR clade was the most predominant but it was replaced by the GH clade in the latter wave. The B.1.1.25 variant showed the highest frequency in wave-1 while in case of wave-2, the B.1.351.3 variant, was the most common one. A notable presence of the delta variant, which is currently at the center of concern, was also observed. Comparison of the Spike protein found in the reference and the 3 most common lineages found in Bangladesh namely, B.1.1.7, B.1.351, B.1.617 in terms of their ability to form stable complexes with ACE2 receptor revealed that B.1.617 had the potential to be more transmissible than others. Importantly, no indigenous variants have been detected so far which implies that the successful prevention of import of foreign variants can diminish the outbreak in the country.


Sign in / Sign up

Export Citation Format

Share Document