Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors

Author(s):  
wei Wang ◽  
Ben Niu ◽  
Wenxuan Jiang ◽  
Mengqi Lv ◽  
Sa Wang

Abstract Based on the dependence of the light scattering intensity of single Prussian blue nanoparticles (PBNPs) on their oxidation state during sinusoidal potential modulation at varying frequencies, we present an electro-optical microscopic imaging approach to optically acquire the Faradaic electrochemical impedance spectroscopy (oEIS) of single PBNPs. Frequency analysis revealed typical pseudocapacitive behavior with hybrid charge-storage mechanisms depending on the modulation frequency. In the low-frequency range (0.04–1 Hz), the optical amplitude was inversely proportional to the square root of the modulation frequency (i.e., ∆I ∝ f− 0.5; diffusion-limited process), while in the high-frequency range (1.25–100 Hz), it was inversely proportional to the modulation frequency (∆I ∝ f− 1; surface charging process). The contribution of each process was, therefore, determined and quantified using oEIS at the single-nanoparticle level. Because the geometry of single cuboid-shaped PBNPs can be precisely determined by scanning electron microscopy and atomic force microscopy, oEIS of single PBNPs allowed the determination of the depth of the surface charging layer, revealing it to be ~ 2 unit cells regardless of the nanoparticle size.

Author(s):  
V. M. Lipka ◽  
V. V. Ryukhtin ◽  
Yu. G. Dobrovolsky

Measurement of periodic optical information signals in the background light noise with a photodetector with extended dynamic range is an urgent task of modern electronics and thus has become the aim of this study. To increase the dynamic range of the photodetector, a new version of the automatic gain control (AGC) circuit has been developed, which consists of an AGC controller, an output photodetector amplifier and an AGC detector. The authors measured the dynamic range of the photodetector when receiving optical radiation with a wavelength of 1064 nm in the power range from 2.10–8 to 2.10–5 W at a modulation frequency of 20 kHz with the AGC on. Under these conditions, the dynamic range of the photodetector was found to be up to 67 dB. If the AGC was off, the dynamic range did not exceed 30 dB. Thus, the study made it possible to create a photodetector with an extended dynamic range up to 67 dB based on a new version of the AGC circuit. The design of the photodetector allowed choosing a useful signal of a particular modulation frequency in the frequency range from 3 to 45 kHz and effectively suppresses the frequencies caused by optical interference in the low frequency range from the frequency of the input signal of constant amplitude up to 3 kHz inclusive. This compensates the current up to 15 mA, which is equivalent to the power of light interference of about 15 mW. Further research should address the issues of reliability of the proposed photodetector design and optimization of its optical system. The photodetector can be used in geodesy and ambient air quality monitoring.


2007 ◽  
Vol 1056 ◽  
Author(s):  
Betzaida Batalla Garcia ◽  
Aaron M. Feaver ◽  
Richard Champion ◽  
Qifeng Zhang ◽  
Tim T. Fister ◽  
...  

ABSTRACTIn this study a group of resorcinol-formaldehyde carbon cryogels (CC) have been processed chemically, via catalysis and activation, to obtain varied nanostructures and pore size distributions. To understand the relation between structure and electrochemical properties the capacitor can be studied as a dielectric system composed of a porous electrode and the electrolyte (Tetraethylammonium tetrafluoroborate in propylene carbonate). Using Electrochemical impedance spectroscopy (EIS) the complex capacitance and power are used to study the behavior of the system below the relaxation frequency fo (φ = −45°). Therefore, the relaxation of the capacitor system at the low frequency range, f < fo, may be used as a measure of pore/electrolyte interaction. The approach here proposed also allows for a direct experimental characterization of the capacitance and power at low frequencies where small pores are likely to affect the diffusion dynamics of the electrolyte molecules. The results suggest a correlation between the occurrence of small micropores and that of high power losses that are related to the resistive element produced at the low frequency range. Moreover, the impact of the micropore structure upon the supercapacitor's performance is apparent in its capacitance and energy as well. In addition to the complex power and capacitance other measurements including BET Nitrogen sorption, cyclic voltammetry, galvanic cycling and X-Ray Raman Scattering were used to characterize the samples and support these results.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 493
Author(s):  
Fares Zouaoui ◽  
Saliha Bourouina-Bacha ◽  
Mustapha Bourouina ◽  
Nadia Zine ◽  
Abdelhamid Errachid ◽  
...  

The massive and careless use of glyphosate (GLY) in agricultural production raises many questions regarding environmental pollution and health risks, it is then important to develop simple methods to detect it. Electrochemical impedance spectroscopy (EIS) is an effective analytical tool for characterizing properties at the electrode/electrolyte interface. It is useful as an analytical procedure, but it can also help in the interpretation of the involved fundamental electrochemical and electronic processes. In this study, the impedance data obtained experimentally for a microsensor based on molecularly imprinted chitosan graft on 4-aminophenylacetic acid for the detection of glyphosate was analyzed using an exact mathematical model based on physical theories. The procedure for modeling experimental responses is well explained. The analysis of the observed impedance response leads to estimations of the microscopic parameters linked to the faradic and capacitive current. The interaction of glyphosate molecules with the imprinted sites of the CS-MIPs film is observed in the high frequency range. The relative variation of the charge transfer resistance is proportional to the log of the concentration of glyphosate. The capacitance decreases as the concentration of glyphosate increases, which is explained by the discharging of the charged imprinted sites when the glyphosate molecule interacts with the imprinted sites through electrostatic interactions. The phenomenon of adsorption of the ions in the CMA film is observed in the low frequency range, this phenomenon being balanced by the electrostatic interaction of glyphosate with the imprinted sites in the CS-MIPs film.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Krisztián Szigeti ◽  
Nikolett Hegedűs ◽  
Kitti Rácz ◽  
Ildikó Horváth ◽  
Dániel S. Veres ◽  
...  

Background. The aim of this study was to develop and characterize a nanoparticle-based image-contrast platform which is biocompatible, chemically stable, and accessible for radiolabeling with 201Tl. We explored whether this nanoparticle enhanced the T1 signal which might make it an MRI contrast agent as well. Methods. The physical properties of citrate-coated Prussian blue nanoparticles (PBNPs) (iron(II);iron(III);octadecacyanide) doped with 201Tl isotope were characterized with atomic force microscopy, dynamic light scattering, and zeta potential measurement. PBNP biodistribution was determined by using SPECT and MRI following intravenous administration into C57BL6 mice. Activity concentrations (MBq/cm3) were calculated from the SPECT scans for each dedicated volume of interest (VOI) of liver, kidneys, salivary glands, heart, lungs, and brain. Results. PBNP accumulation peaked at 2 hours after injection predominantly in the kidneys and the liver followed by a gradual decrease in activity in later time points. Conclusion. We synthetized, characterized, and radiolabeled a Prussian blue-based nanoparticle platform for contrast material applications. Its in vivo radiochemical stability and biodistribution open up the way for further diagnostic applications.


Author(s):  
Christopher Sugino ◽  
Stephen Leadenham ◽  
Massimo Ruzzene ◽  
Alper Erturk

Metamaterials made from locally resonating arrays can exhibit attenuation bandgaps at wavelengths much longer than the lattice size, enabling low-frequency vibration attenuation. For an effective use of such locally resonant metamaterial concepts, it is required to bridge the gap between the dispersion characteristics and modal behavior of the host structure with its resonators. To this end, we develop a novel argument for bandgap formation in finite-length beams, relying on modal analysis and the assumption of infinitely many resonators. This assumption is analogous to the wave assumption of an infinitely long beam composed of unit cells, but gives additional analytical insight into the bandgap, and yields a simple formula for the frequency range of the bandgap. We present a design guideline to place the bandgap for a finite beam with arbitrary boundary conditions in a desired frequency range that depends only on the total mass ratio and natural frequency of the resonators. For a beam with a finite number of resonators and specified boundary conditions, we suggest a method for choosing the optimal number of resonators. We validate the model with both finite-element simulations and a simple experiment, and draw conclusions.


Author(s):  
Dawei Zhu ◽  
Xiuchang Huang ◽  
Hongxing Hua ◽  
Hui Zheng

Owing to their locally resonant mechanism, internal resonators are usually used to provide band gaps in low-frequency region for many types of periodic structures. In this study, internal resonators are used to improve the vibration attenuation ability of finite periodic tetra-chiral coating, enabling high reduction of the radiated sound power by a vibrating stiffened plate. Based on the Bloch theorem and finite element method, the band gap characteristics of tetra-chiral unit cells filled with and without internal resonators are analysed and compared to reveal the relationship between band gaps and vibration modes of such tetra-chiral unit cells. The rotational vibration of internal resonators can effectively strengthen the vibration attenuation ability of tetra-chiral lattice and extend the effective frequency range of vibration attenuation. Two tetra-chiral lattices with and without internal resonators are respectively designed and their vibration transmissibilities are measured using the hammering method. The experimental results confirm the vibration isolation effect of the internal resonators on the finite periodic tetra-chiral lattice. The tetra-chiral lattice as an acoustic coating is applied to a stiffened plate, and analysis results indicate that the internal resonators can obviously enhance the vibration attenuation ability of tetra-chiral lattice coating in the frequency range of the band gap corresponding to the rotating vibration mode of internal resonators. When the soft rubber with the internal resonators in tetra-chiral layers has gradient elastic modulus, the vibration attenuation ability and noise reduction of the tetra-chiral lattice coating are basically enhanced in the frequency range of the corresponding band gaps of tetra-chiral unit cells.


2020 ◽  
Vol 87 (9) ◽  
Author(s):  
Jiawen Xu ◽  
Xin Zhang ◽  
Ruqiang Yan

Abstract In this paper, we report a piezoelectric phononic crystal plate featuring broadband wave attenuation. In the piezoelectric phononic crystal system, the transmitted elastic wave is attenuated owing to destructive interference by taking advantages of phase difference. The proposed concept is applied to a piezoelectric phononic crystal plate synthesized by functional dual-lane units that yields phase difference. Whereas, the piezoelectric unit-cells are connected negative capacitance shunt circuits individually. Our analysis shows that the coupled phononic crystal has a strong broadband low-frequency wave attenuation capability. The bandwidth of 10 dB wave attenuation is broadened by 34 times in the vicinity of 5 kHz comparing to that of a local resonance metamaterial under the same mechanical configuration. Moreover, the frequency range of wave attenuation of the proposed system can be online adjusted through the modification of the external shunt circuits.


2003 ◽  
Vol 90 (5) ◽  
pp. 2818-2826 ◽  
Author(s):  
S. J. Sterbing ◽  
W. R. D'Angelo ◽  
E.-M. Ostapoff ◽  
S. Kuwada

Most sounds in the natural environment are amplitude-modulated (AM). To determine if AM alters the neuronal sensitivity to interaural time differences (ITDs) in low-frequency sounds, we tested neuronal responses to a binaural beat stimulus with and without modulation. We recorded from single units in the inferior colliculus of the unanesthetized rabbit. We primarily used low frequency (∼25 Hz) modulation that was identical at both ears. We found that modulation could enhance, suppress, or not affect the discharge rate. In extreme cases, a neuron that showed no response to the unmodulated binaural beat did so when modulation was added to both ears. At the other extreme, a neuron that showed sensitivity to the unmodulated binaural beat ceased firing with modulation. Modulation could also affect the frequency range of ITD sensitivity, best ITD, and ITD tuning width. Despite these changes in individual neurons, averaging across all neurons, the peak and width of the population ITD function remained unchanged. Because ITD-sensitive neurons also time-locked to the modulation frequency, the location and sound attributes are processed simultaneously by these neurons.


2011 ◽  
Vol 415-417 ◽  
pp. 1413-1416
Author(s):  
Lei Wang ◽  
Cheng Qiang An ◽  
Jie Sun ◽  
Hai Yun Yu ◽  
Chang Sheng Liu

The aim of this study is to study the protection performance of fluorocarbon resin coatings on galvanized sheets with electrochemical impedance spectra(EIS) and scanning electron microscopy (SEM) for UV ageing to simulate nature environment. The results indicated that impedance of the coatings acted as a capacitive character at the early UV ageing stage. the diffusion impedance was shown in low-frequency range, which was attributed to the self-healing effect of the chromate layer to the metal interface. After 2000 hours of ageing in the UV chamber, there is a low impedance values in the impedance spectra. Taking into account defects were found on the film surface on SEM picture, it is easy that the outside corrosive substances meet metal substrate through the coating at the defects.


Sign in / Sign up

Export Citation Format

Share Document