Higher probability of abrupt shift from drought to heavy rainfall in a warmer world

Author(s):  
Boen Zhang ◽  
Shuo Wang ◽  
Jakob Zscheischler

Abstract The abrupt shift from drought to heavy rainfall can lead to consecutive drought-flood hazards with high socioeconomic losses. However, past and future changes in such abrupt shift events remain poorly understood. Here we show that the lagged dependence of drought and heavy rainfall may double the probability of consecutive drought-flood hazards that would be expected from the independent occurrence of both hazards. The average historical probability of abrupt shift is 53% and will increase robustly with warming across mid- and high-latitude areas. Such increases may even emerge in the regions with projected decreases in both droughts and heavy rainfall events. Future droughts are more likely to terminate along with intense convection and strong water vapor convergence exceeding those in future normal periods, potentially amplifying the probability and intensity of heavy rainfall following droughts. Such rainfall intensification would seriously challenge the adaptation of global water infrastructure to rapid drought-flood cycles.

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1122
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc

The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m−1 s−1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 513
Author(s):  
Oluseyi Ezekiel Akinola ◽  
Yan Yin

The role of ice hydrometeor-types in bulk schemes available in the Weather Research and Forecasting (WRF) model has been assessed in this study to simulate two heavy rainfall events reported over the southern part of Nigeria. This has been done with a view to provide necessary information on the convective cloud hydrometeor types and compositions in the area to improve heavy rainfall forecasts with the selection of appropriate bulk microphysical schemes. Results from the statistical validation of the simulated rainfall by different schemes showed that for the first event, the WSM5 scheme with less dense snow ice particles performed relatively better than other schemes like WSM6, Morrison with graupel (MORR_G), and Morrison with hail (MORR_H), while the WDM6 scheme performed least effectively when compared to TRMM data. Conversely, the second event showed that a WDM6 scheme with graupel as dense ice particle performed better than other schemes. Further analysis using a spatial distribution plot of simulated rainfall over the area of study shows that for both cases, almost all the schemes fail to capture the intensity and location of the heavy rainfall shown by TRMM data. In addition, the surface accumulated rainfall area average of all schemes for the first (second) event shows an underestimation (overestimation). Vertical profile plots of mass mixing ratios of different ice hydrometeor compositions showed that the WSM5 scheme contains a greater mass of snow than other type ice particles for both cases, while the hydrometeor path calculation of total mass content showed the WSM5 scheme having more snow mass content than other schemes during the period of analysis in both cases. A pressure-time plot of the differences between simulated air temperature and water vapor of the WSM5 scheme showed that WSM5 simulated the higher air temperature that was needed and water vapor at the mid and upper troposphere more than other schemes. In conclusion, results from this study has shown that less dense ice particle (e.g., snow) and high dense ice particle (e.g., graupel and hail) type-bulk schemes can both be suitable for simulating heavy rainfall events that are produced by convective system(s) that are common in the area.


2012 ◽  
Vol 69 (2) ◽  
pp. 521-537 ◽  
Author(s):  
Christopher A. Davis ◽  
Wen-Chau Lee

Abstract The authors analyze the mesoscale structure accompanying two multiday periods of heavy rainfall during the Southwest Monsoon Experiment and the Terrain-Induced Mesoscale Rainfall Experiment conducted over and near Taiwan during May and June 2008. Each period is about 5–6 days long with episodic heavy rainfall events within. These events are shown to correspond primarily to periods when well-defined frontal boundaries are established near the coast. The boundaries are typically 1 km deep or less and feature contrasts of virtual temperature of only 2°–3°C. Yet, owing to the extremely moist condition of the upstream conditionally unstable air, these boundaries appear to exert a profound influence on convection initiation or intensification near the coast. Furthermore, the boundaries, once established, are long lived, possibly reinforced through cool downdrafts and prolonged by the absence of diurnal heating over land in generally cloudy conditions. These boundaries are linked phenomenologically with coastal fronts that occur at higher latitudes.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 875
Author(s):  
Li Zhou ◽  
Lin Xu ◽  
Mingcai Lan ◽  
Jingjing Chen

Heavy rainfall events often cause great societal and economic impacts. The prediction ability of traditional extrapolation techniques decreases rapidly with the increase in the lead time. Moreover, deficiencies of high-resolution numerical models and high-frequency data assimilation will increase the prediction uncertainty. To address these shortcomings, based on the hourly precipitation prediction of Global/Regional Assimilation and Prediction System-Cycle of Hourly Assimilation and Forecast (GRAPES-CHAF) and Shanghai Meteorological Service-WRF ADAS Rapid Refresh System (SMS-WARR), we present an improved weighting method of time-lag-ensemble averaging for hourly precipitation forecast which gives more weight to heavy rainfall and can quickly select the optimal ensemble members for forecasting. In addition, by using the cross-magnitude weight (CMW) method, mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (CC), the verification results of hourly precipitation forecast for next six hours in Hunan Province during the 2019 typhoon Bailu case and heavy rainfall events from April to September in 2020 show that the revised forecast method can more accurately capture the characteristics of the hourly short-range precipitation forecast and improve the forecast accuracy and the probability of detection of heavy rainfall.


Author(s):  
Chanil Park ◽  
Seok-Woo Son ◽  
Joowan Kim ◽  
Eun-Chul Chang ◽  
Jung-Hoon Kim ◽  
...  

AbstractThis study identifies diverse synoptic weather patterns of warm-season heavy rainfall events (HREs) in South Korea. The HREs not directly connected to tropical cyclones (TCs) (81.1%) are typically associated with a midlatitude cyclone from eastern China, the expanded North Pacific high and strong southwesterly moisture transport in between. They are frequent both in the first (early summer) and second rainy periods (late summer) with impacts on the south coast and west of the mountainous region. In contrast, the HREs resulting from TCs (18.9%) are caused by the synergetic interaction between the TC and meandering midlatitude flow, especially in the second rainy period. The strong south-southeasterly moisture transport makes the southern and eastern coastal regions prone to the TC-driven HREs. By applying a self-organizing map algorithm to the non-TC HREs, their surface weather patterns are further classified into six clusters. Clusters 1 and 3 exhibit frontal boundary between the low and high with differing relative strengths. Clusters 2 and 5 feature an extratropical cyclone migrating from eastern China under different background sea-level pressure patterns. Cluster 4 is characterized by the expanded North Pacific high with no organized negative sea-level pressure anomaly, and cluster 6 displays a development of a moisture pathway between the continental and oceanic highs. Each cluster exhibits a distinct spatio-temporal occurrence distribution. The result provides useful guidance for predicting the HREs by depicting important factors to be differently considered depending on their synoptic categorization.


2011 ◽  
Vol 11 (9) ◽  
pp. 2463-2468 ◽  
Author(s):  
Y. Tramblay ◽  
L. Neppel ◽  
J. Carreau

Abstract. In Mediterranean regions, climate studies indicate for the future a possible increase in the extreme rainfall events occurrence and intensity. To evaluate the future changes in the extreme event distribution, there is a need to provide non-stationary models taking into account the non-stationarity of climate. In this study, several climatic covariates are tested in a non-stationary peaks-over-threshold modeling approach for heavy rainfall events in Southern France. Results indicate that the introduction of climatic covariates could improve the statistical modeling of extreme events. In the case study, the frequency of southern synoptic circulation patterns is found to improve the occurrence process of extreme events modeled via a Poisson distribution, whereas for the magnitude of the events, the air temperature and sea level pressure appear as valid covariates for the Generalized Pareto distribution scale parameter. Covariates describing the humidity fluxes at monthly and seasonal time scales also provide significant model improvements for the occurrence and the magnitude of heavy rainfall events. With such models including climatic covariates, it becomes possible to asses the risk of extreme events given certain climatic conditions at monthly or seasonal timescales. The future changes in the heavy rainfall distribution can also be evaluated using covariates computed by climate models.


2021 ◽  
Author(s):  
Frederik Wolf ◽  
Ugur Ozturk ◽  
Kevin Cheung ◽  
Reik V. Donner

<p>Investigating the synchrony and interdependency of heavy rainfall occurrences is crucial to understand the underlying physical mechanisms and reduce physical and economic damages by improved forecasting strategies. In this context, studies utilizing functional network representations have recently contributed to significant advances in the understanding and prediction of extreme weather events.</p><p>To thoroughly expand on previous works employing the latter framework to the East Asian Summer Monsoon (EASM) system, we focus here on changes in the spatial organization of synchronous heavy precipitation events across the monsoon season (April to August) by studying the temporal evolution of corresponding network characteristics in terms of a sliding window approach. Specifically, we utilize functional climate networks together with event coincidence analysis for identifying and characterizing synchronous activity from daily rainfall estimates with <span>a spatial resolution of 0.25° </span>between 1998 and 2018. Our results demonstrate that the formation of the Baiu front as a main feature of the EASM is reflected by a double-band structure of synchronous heavy rainfall with two centers north and south of the front. Although the two separated bands are strongly related to either low- or high-level winds which are commonly assumed to be independent, we provide evidence that it is rather their mutual interconnectivity that changes during the different phases of the EASM season in a characteristic way.</p><p>Our findings shed some new light on the interplay between tropical and extratropical factors controlling the EASM intraseasonal evolution, which could potentially help improving future forecasts of the Baiu onset in different regions of East Asia.</p><p> </p><p>Further details: F. Wolf, U. Ozturk, K. Cheung, R.V. Donner: Spatiotemporal patterns of synchronous heavy rainfall events in East Asia during the Baiu season. Earth System Dynamics (in review). Discussion Paper: Earth System Dynamics Discussions, (2020)</p>


Sign in / Sign up

Export Citation Format

Share Document