Antibacterial activity of chitosan-based nanohybrid membranes against drug-resistant bacterial isolates from burn wound infections

Author(s):  
Pouya Amiri ◽  
Jalil Kardan-Yamchi ◽  
Hossein Kazemian ◽  
Faranak Rezaei

Abstract Biocompatible and non-toxic properties of chitosan make it a candidate with excellent application prospects in developing wound dressing conjugate compounds. Six different chitosan-based nanohybrid membranes were evaluated against multi-drug resistant bacterial isolates. Twenty-seven drug-resistant Staphylococcus aureus, Enterococcus faecalis, Acinetobacter baumannii, and Pseudomonas aeruginosa species were isolated from burn wound infections. Different combinations of chitosan, ciprofloxacin (CIP), biofunctionalized montmorillonite (MMT), and montmorillonite with sulfate chains (SMMT) were provided, and their antibacterial activity was assessed using the colony count method. Six Methicillin-resistant S. aureus, seven vancomycin-resistant E. faecalis, four A. baumannii, and 10 P. aeruginosa multi-drug resistant were identified. Chitosan and montmorillonite did not show significant antibacterial effect but, chitosan/SMMT/CIP was the most effective nanocomposite. Chitosan-based nanocomposites with ciprofloxacin could effectively reduce the susceptibility of drug-resistant bacterial isolates. Bacterial targeting using nanosystems provides an opportunity for effective antibiotic treatment by improving antibacterial efficacy.

Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 126
Author(s):  
Salvatore Princiotto ◽  
Stefania Mazzini ◽  
Loana Musso ◽  
Fabio Arena ◽  
Sabrina Dallavalle ◽  
...  

The global increase in infections by multi-drug resistant (MDR) pathogens is severely impacting our ability to successfully treat common infections. Herein, we report the antibacterial activity against S. aureus and E. faecalis (including some MDR strains) of a panel of adarotene-related synthetic retinoids. In many cases, these compounds showed, together with favorable MICs, a detectable bactericidal effect. We found that the pattern of substitution on adarotene could be modulated to obtain selectivity for antibacterial over the known anticancer activity of these compounds. NMR experiments allowed us to define the interaction between adarotene and a model of microorganism membrane. Biological assessment confirmed that the scaffold of adarotene is promising for further developments of non-toxic antimicrobials active on MDR strains.


Burns ◽  
2004 ◽  
Vol 30 (3) ◽  
pp. 241-243 ◽  
Author(s):  
N Agnihotri ◽  
V Gupta ◽  
R.M Joshi

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 525 ◽  
Author(s):  
Yu Chen ◽  
Weipeng Lu ◽  
Yanchuan Guo ◽  
Yi Zhu ◽  
Yeping Song

Traditional wound dressings require frequent replacement, are prone to bacterial growth and cause a lot of environmental pollution. Therefore, biodegradable and antibacterial dressings are eagerly desired. In this paper, gelatin/ZnO fibers were first prepared by side-by-side electrospinning for potential wound dressing materials. The morphology, composition, cytotoxicity and antibacterial activity were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (DLS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and Incucyte™ Zoom system. The results show that ZnO particles are uniformly dispersed on the surface of gelatin fibers and have no cytotoxicity. In addition, the gelatin/ZnO fibers exhibit excellent antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with a significant reduction of bacteria to more than 90%. Therefore, such a biodegradable, nontoxic and antibacterial fiber has excellent application prospects in wound dressing.


2020 ◽  
Vol 21 (2) ◽  
pp. 393 ◽  
Author(s):  
Eliana B. Souto ◽  
André F. Ribeiro ◽  
Maria I. Ferreira ◽  
Maria C. Teixeira ◽  
Andrea A. M. Shimojo ◽  
...  

Burn wounds are highly debilitating injuries, with significant morbidity and mortality rates worldwide. In association with the damage of the skin integrity, the risk of infection is increased, posing an obstacle to healing and potentially leading to sepsis. Another limitation against healing is associated with antibiotic resistance mainly due to the use of systemic antibiotics for the treatment of localized infections. Nanotechnology has been successful in finding strategies to incorporate antibiotics in nanoparticles for the treatment of local wounds, thereby avoiding the systemic exposure to the drug. This review focuses on the most recent advances on the use of nanoparticles in wound dressing formulations and in tissue engineering for the treatment of burn wound infections.


2019 ◽  
Vol 7 (6) ◽  
pp. 157 ◽  
Author(s):  
Dan Zhang ◽  
Ren-You Gan ◽  
Arakkaveettil Kabeer Farha ◽  
Gowoon Kim ◽  
Qiong-Qiong Yang ◽  
...  

Although spice extracts are well known to exhibit antibacterial properties, there is lack of a comprehensive evaluation of the antibacterial effect of spices against antibiotic-resistant bacteria. In the present study, ethanolic extracts from a total of 67 spices were comprehensively investigated for their in vitro antibacterial activities by agar well diffusion against two common food-borne bacteria, Staphylococcus aureus and Salmonella enteritidis, with multi-drug resistance. Results showed that S. aureus was generally more sensitive to spice extracts than S. enteritidis. Of the 67 spice extracts, 38 exhibited antibacterial activity against drug-resistant S. aureus, while only four samples were effective on drug-resistant S. enteritidis. In addition, 11 spice extracts with inhibition zones greater than 15 mm were further verified for their broad-spectrum antibacterial properties using another 10 drug-resistant S. aureus strains. It was found that five spice extracts, including galangal, fructus galangae, cinnamon, yellow mustard seed, and rosemary, exhibited the highest antibacterial capacity. Further cytotoxicity of these 11 spices was determined and LC50 values were found to be more than 100 μg/mL except for galangal, rosemary, and sage, whose LC50 values were 9.32 ± 0.83, 19.77 ± 2.17, and 50.54 ± 2.57, respectively. Moreover, the antioxidant activities (ferric-reducing antioxidant power (FRAP) and trolox equivalent antioxidant capacity (TEAC) values) and total phenolic content (TPC) of spice extracts were determined to establish possible correlations with the antibacterial activity. Although the antibacterial effect was positively correlated with the antioxidant activities and TPC, the correlation was weak (r < 0.5), indicating that the antibacterial activity could also be attributed to other components besides antioxidant polyphenols in the tested spice extracts. In conclusion, dietary spices are good natural sources of antibacterial agents to fight against antibiotic-resistant bacteria, with potential applications as natural food preservatives and natural alternatives to antibiotics in animal feeding.


Sign in / Sign up

Export Citation Format

Share Document