scholarly journals Electrospun Gelatin Fibers Surface Loaded ZnO Particles as a Potential Biodegradable Antibacterial Wound Dressing

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 525 ◽  
Author(s):  
Yu Chen ◽  
Weipeng Lu ◽  
Yanchuan Guo ◽  
Yi Zhu ◽  
Yeping Song

Traditional wound dressings require frequent replacement, are prone to bacterial growth and cause a lot of environmental pollution. Therefore, biodegradable and antibacterial dressings are eagerly desired. In this paper, gelatin/ZnO fibers were first prepared by side-by-side electrospinning for potential wound dressing materials. The morphology, composition, cytotoxicity and antibacterial activity were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (DLS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and Incucyte™ Zoom system. The results show that ZnO particles are uniformly dispersed on the surface of gelatin fibers and have no cytotoxicity. In addition, the gelatin/ZnO fibers exhibit excellent antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with a significant reduction of bacteria to more than 90%. Therefore, such a biodegradable, nontoxic and antibacterial fiber has excellent application prospects in wound dressing.

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1043 ◽  
Author(s):  
Honghai Li ◽  
Yu Chen ◽  
Weipeng Lu ◽  
Yisheng Xu ◽  
Yanchuan Guo ◽  
...  

Current wound dressings have poor antimicrobial activities and are difficult to degrade. Therefore, biodegradable and antibacterial dressings are urgently needed. In this article, we used the hydrothermal method and side-by-side electrospinning technology to prepare a gelatin mat with incorporated zinc oxide/graphene oxide (ZnO/GO) nanocomposites. The resultant fibers were characterized by field emission environment scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). Results indicated that the gelatin fibers had good morphology, and ZnO/GO nanocomposites were uniformly dispersed on the fibers. The loss of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) viability were observed to more than 90% with the incorporation of ZnO/GO. The degradation process showed that the composite fibers completely degraded within 7 days and had good controllable degradation characteristics. This study demonstrated the potential applicability of ZnO/GO-gelatin mats with excellent antibacterial properties as wound dressing material.


2021 ◽  
Author(s):  
Katerina Menclová ◽  
Petr Svoboda ◽  
Jan Hadač ◽  
Štefan Juhás ◽  
Jana Juhásová ◽  
...  

ABSTRACT Background Nanofiber wound dressings remain the domain of in vitro studies. The purpose of our study was to verify the benefits of chitosan (CTS) and polylactide (PLA)-based nanofiber wound dressings on a porcine model of a naturally contaminated standardized wound and compare them with the conventional dressings, i.e., gauze and Inadine. Material and Methods The study group included 32 pigs randomized into four homogeneous groups according to the wound dressing type. Standardized wounds were created on their backs, and wound dressings were regularly changed. We evaluated difficulty of handling individual dressing materials and macroscopic appearance of the wounds. Wound swabs were taken for bacteriological examination. Blood samples were obtained to determine blood count values and serum levels of acute phase proteins (serum amyloid A, C-reactive protein, and haptoglobin). The crucial point of the study was histological analysis. Microscopic evaluation was focused on the defect depth and tissue reactions, including formation of the fibrin exudate with neutrophil granulocytes, the layer of granulation and cellular connective tissue, and the reepithelialization. Statistical analysis was performed by using SPSS software. The analysis was based on the Kruskal–Wallis H test and Mann–Whitney U test followed by Bonferroni correction. Significance was set at P < .05. Results Macroscopic examination did not show any difference in wound healing among the groups. However, evaluation of histological findings demonstrated that PLA-based nanofiber dressing accelerated the proliferative (P = .025) and reepithelialization (P < .001) healing phases, while chitosan-based nanofiber dressing potentiated and accelerated the inflammatory phase (P = .006). No statistically significant changes were observed in the blood count or acute inflammatory phase proteins during the trial. Different dynamics were noted in serum amyloid A values in the group treated with PLA-based nanofiber dressing (P = .006). Conclusion Based on the microscopic examination, we have documented a positive effect of nanofiber wound dressings on acceleration of individual phases of the healing process. Nanofiber wound dressings have a potential to become in future part of the common wound care practice.


2020 ◽  
Vol 8 (7) ◽  
pp. 481 ◽  
Author(s):  
Tatyana A. Kuznetsova ◽  
Boris G. Andryukov ◽  
Natalia N. Besednova ◽  
Tatyana S. Zaporozhets ◽  
Andrey V. Kalinin

The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.


RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 50267-50277 ◽  
Author(s):  
Heyu Li ◽  
Maochun Wang ◽  
Gareth R. Williams ◽  
Junzi Wu ◽  
Xiaozhu Sun ◽  
...  

Illustration showing the fabrication process and test contents of electrospun gelatin nanofibers loaded with vitamins A and E as wound dressing materials in this paper.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3022
Author(s):  
Chia-Wei Chang ◽  
Kun-Tsung Lu

In our previous report, the antibacterial agents with different metals, mono(hydroxyethoxyethyl)phthalate [M(HEEP)2, M = Zn, Mn, and Ca], were synthesized. For increasing their yields, modified synthesis and purified processes were further investigated. The result of energy-dispersive X-ray spectroscopy showed the M(HEEP)2 could be stable and successfully synthesized, and their yields were raised to 73–85% from our previous report of 43–55%. For ultraviolet-cured wood floor coating application, the Zn(HEEP)2 was selected as an antibacterial agent and mixed with commercial UV wood floor coating. The effects on the antibacterial activity of UV films with different Zn(HEEP)2 additions of 0, 4, 8, and 12 phr as well as the commercial nano-Ag of 12 phr against Escherichia coli were evaluated. In the static antibacterial test, the UV films with Zn(HEEP)2 additions had similar antibacterial activity of 57–59%. In another dynamic shaking antibacterial test, the film containing 12 phr Zn(HEEP)2 had the best antibacterial activity among all the UV films. On the film properties, the Zn(HEEP)2-containing UV films had lower gloss and abrasion resistance, and slightly increased the hardness than those of UV film without Zn(HEEP)2 addition. However, there were no noticeable differences in mass retention, lightfastness, and thermal stability between UV films with and without the Zn(HEEP)2 addition. In this study, the 12 phr Zn(HEEP)2-containing UV film provided the best antibacterial activity against E. coli and had the balanced film properties for application on the UV wood floor coating.


2021 ◽  
Author(s):  
Chenchen Xie ◽  
Jin Yan ◽  
Siyuan Cao ◽  
Ri Liu ◽  
Baishun Sun ◽  
...  

Abstract In this study, the bi-layered disulfiram-loaded fiber membranes with antibacterial activity and different surface wettabilities are prepared using electrospinning technology. In the application of wound dressing, the hydrophilic surface of fiber membranes is beneficial for the cell adhesion and drug release to heal the wound, meanwhile the hydrophobic outside surface is able to block water penetration to reduce the probability of wound infection. The obtained bi-layered drug-loaded fiber membranes are composed of polyvinylidene fluoride (PVDF) bottom surface and disulfiram (DSF)/polylactic acid (PLA) top surface. To modify the top surface wettability, the oxygen plasma modification of bi-layered membranes was carried out. We analyzed the morphology, wettability and chemical compositions of bi-layered drug-loaded fiber membranes by various techniques. And the bi-layered disulfiram-loaded membranes showed potent antibacterial activity in vitro against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). Thus, the obtained bi-layered disulfiram-loaded fiber membranes are very suitable for wound dressings application.


2021 ◽  
Vol 893 ◽  
pp. 45-55
Author(s):  
Ana S. Ribeiro ◽  
Sofia M. Costa ◽  
Diana P. Ferreira ◽  
Houcine Abidi ◽  
Raul Fangueiro

In this work, natural-based and biodegradable nanofibers were produced by electrospinning for drug delivery and wound dressing applications, using gelatin (Gel), chitosan (CS), cellulose nanocrystals (CNC) and natural propolis extract. The polymeric formulations and electrospinning parameters were optimized, resulting in the development of Gel/CS nanofibers with mean diameters of 97 nm. CNC were successfully introduced into the optimized Gel/CS solution and the viscosity and conductivity values were recorded. The developed nanofibers were characterized using FESEM, ATR-FTIR, TGA and WCA. The incorporation of different CNC concentrations improved the solutions’ electrospinnability and the membranes’ physical integrity. Defect-free and uniform Gel/CS/CNC nanofibers were observed by FESEM images, and the fibers’ diameters slight increased. The hydrophilic character was maintained after the CNC incorporation. Finally, Gel/CS/CNC/Propolis nanofibers demonstrated antibacterial activity against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria.


2019 ◽  
Vol 19 (3) ◽  
pp. 32-45 ◽  
Author(s):  
E. E. Doğan ◽  
P. Tokcan ◽  
M. E. Diken ◽  
B. Yilmaz ◽  
B. K. Kizilduman ◽  
...  

AbstractIn this study, it was aimed to synthesize hydrogel based antibacterial, biocompatible and non-toxic wound dressing materials by solvent removal method usingpoly(vinylalcohol) (PVA), poly(vinylpyrolidone) (PVP) and nano pomegranate seed (PN).The morphology, swelling capacity, contact angle, antibacterial activity, biocompatibility and cytotoxicity of the synthesized films were determined. From the experimental findings, it was found that the PN particles were nano-sized, showed homogeneous and spherical distribution and improved the hydrophobic properties of the materials obtained by the addition of PN. And also, their swelling capacities were decreased with increased PN amount and all of the materials showed similar antibacterial activity, hemocompatibility and cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document