scholarly journals Development of a Decellularized Hypopharynx with Vascular Pedicle Scaffold for use in Reconstructing Hypopharynx

Author(s):  
Nan Hou ◽  
Die Lv ◽  
XiaoLi Xu ◽  
YanQing Lu ◽  
JingZhi Li ◽  
...  

Abstract Background: Hypopharynx reconstruction after hypopharyngectomy is still a great challenge. Perfusion decellularization is for extracellular matrix (ECM) scaffolding and had been used in organ reconstruction. Our study aimed to prepare an acellular, natural, three-dimensional (3D) biological hypopharynx with vascular pedicle scaffold as the substitute materials to reconstruct hypopharynx. Result: Scanning electron microscope (SEM) and immuno showed that the decellularized hypopharynx with vascular pedicle scaffold retained intact native anatomical ECM structure. Myoblasts were observed on the recellularized scaffolds with bone marrow mesenchyml stem cells (BMSCs) induced by 5-azacytidine implanted in the rabbit greater omentum by immunohistochemical analysis. conclusion: the decellularized hypopharynx with vascular pedicle scaffold prepared by detergent perfusion in our study has an potential to be an alternative material to pharynx reconstruction.

Author(s):  
Jessica L. LoSurdo ◽  
Douglas W. Chew ◽  
Alejandro Nieponice ◽  
David A. Vorp

The primary goal of tissue engineering is to develop a biological, mechanically-robust, and anti-thrombogenic vascular graft to replace diseased or damaged tissue and organs [1]. For example, researchers have incorporated smooth muscle cells (SMCs) into extracellular matrix to provide a living, functional conduits with the intended purpose of replacing SMC-containing tubes, such as the blood vessel, urethra, esophagus, intestine, etc. Although the preferred source is autologous cells to avoid immunological rejection, adult SMCs are difficult to obtain and expand. An alternative source of autologous cells could be bone marrow derived stem cells (BMSCs), which differentiate toward mesenchymal and hematopoietic lineages [2].


2007 ◽  
Vol 361-363 ◽  
pp. 1075-1078
Author(s):  
Michiyo Honda ◽  
Shigeki Izumi ◽  
Nobuyuki Kanzawa ◽  
Takahide Tsuchiya ◽  
Mamoru Aizawa

Appropriate culture conditions cause bone marrow stem cells to differentiate into multilineage cells such as adipocytes, chondrocytes, and osteoblasts. One key factor that regulates intercellular signaling and cell differentiation is the extracellular matrix microenvironment. The composition of the extracellular matrix influences cellular functions. In the present study, we investigated the effects of a microenvironment comprising a three-dimensional apatite-fiber scaffold (AFS) that has two kinds of pores (micro- and macro pores) on proliferation and subsequent differentiation of bone marrow stem cells. Morphologic observation revealed that osteoblastic cells in the AFS were distributed primarily in the same location on the fibrous scaffold and formed bridges within micro- and macro pores. We used molecular approaches to evaluate cell proliferation and differentiation in detail. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that culturing bone marrow cells on AFS increases expression of osteocalcin (OC) mRNA compared with culture in a dish. Furthermore, cells cultured in AFS expressed type X collagen (Col X), which is a marker of hypertrophic cartilage. These data suggest that the three-dimensional microenvironment of AFS facilitates cell proliferation and differentiation, and promotes endochondral ossification of bone marrow cells.


2013 ◽  
Vol 378 ◽  
pp. 235-238 ◽  
Author(s):  
Jun Qiu ◽  
Zhuo Zhuang ◽  
Bo Huo

The mechanical stimulation from extracellular matrix could regulate physiological behavior of cells through the mechanism of mechanotransduction. Previous researches had shown that apoptosis could be regulated by the size of the cell adhesion area.However, the regulation of cell apoptosis by different adhesion shape with the same area is still unclear. This workfocused on the regulation of apoptosis for bone marrow mesenchymal stem cells (MSCs) by different circularity and area of adhesion geometry. We manufactured micro-pattern surface which was suitable for adhesion of MSCs by the technique of micro-contact printing. Three typesof geometry for individual is land of micro-pattern were designed. We adopted terminal-deoxynucleoitidyl transfer as emediated nick end labeling (TUNEL) method to detectcell apoptosis. This research shows that the adhesion geometry which has smaller area and greater circularity will promote apoptosis of MSCs. This indicates that MSCsmay prefer to live on the surface without any restrict. Ourstudies focused on the significantly important problem about interaction between extracellular matrix and physiological behavior of mesenchymal stem cells.


Diseases ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 74
Author(s):  
Elise Aasebø ◽  
Annette K. Brenner ◽  
Maria Hernandez-Valladares ◽  
Even Birkeland ◽  
Olav Mjaavatten ◽  
...  

Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy, and non-leukemic stromal cells (including mesenchymal stem cells, MSCs) are involved in leukemogenesis and show AML-supporting effects. We investigated how constitutive extracellular mediator release by primary human AML cells alters proteomic profiles of normal bone marrow MSCs. An average of 6814 proteins (range 6493−6918 proteins) were quantified for 41 MSC cultures supplemented with AML-cell conditioned medium, whereas an average of 6715 proteins (range 6703−6722) were quantified for untreated control MSCs. The AML effect on global MSC proteomic profiles varied between patients. Hierarchical clustering analysis identified 10 patients (5/10 secondary AML) showing more extensive AML-effects on the MSC proteome, whereas the other 31 patients clustered together with the untreated control MSCs and showed less extensive AML-induced effects. These two patient subsets differed especially with regard to MSC levels of extracellular matrix and mitochondrial/metabolic regulatory proteins. Less than 10% of MSC proteins were significantly altered by the exposure to AML-conditioned media; 301 proteins could only be quantified after exposure to conditioned medium and 201 additional proteins were significantly altered compared with the levels in control samples (153 increased, 48 decreased). The AML-modulated MSC proteins formed several interacting networks mainly reflecting intracellular organellar structure/trafficking but also extracellular matrix/cytokine signaling, and a single small network reflecting altered DNA replication. Our results suggest that targeting of intracellular trafficking and/or intercellular communication is a possible therapeutic strategy in AML.


Author(s):  
Samuele Laudani ◽  
Valentina La Cognata ◽  
Rosario Iemmolo ◽  
Gabriele Bonaventura ◽  
Giusy Villaggio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document