scholarly journals The X-ray plateau phase of gamma-ray burst originating from an expanding shell with a Lorentz factor of a few tens

Author(s):  
Hüsne Dereli-Bégué ◽  
Asaf Pe'er ◽  
Felix Ryde ◽  
Sam R. Oates ◽  
Bing Zhang ◽  
...  

Abstract Gamma-ray bursts (GRBs) are one of the most energetic explosions known in the Universe and are also known to have the most relativistic jets, with initial expansion Lorentz factors of $100< \Gamma_i <1000$ \cite{KP91, Fenimore+93, WL95, LS01, ZLB11, Zou+11, Racusin+11}. Many of these objects have a plateau in their early X-ray light curves (up to thousands of seconds) \cite{Nousek+06, OBrien+06, Zhang+06, Liang+07, Srinivasaragavan+20}. In this phase, the X-ray flux decreases much slower than theoretically expected \cite{MR93} which has puzzled the community for many years. Here, we show that the observed signal during this phase in both the X-ray and the optical bands is naturally obtained within the classical GRB “fireball” model, provided that (i) the initial Lorentz factor of the relativistically expanding jet is of the order of a few tens, rather than a few hundreds, as is often cited in the literature, and (ii) the expansion occurs into a medium-low density “wind” with density typically 3-4 orders of magnitude below the expectation from a Wolf-Rayet star \cite{CL99}. Within this framework, the end of the “plateau” phase (the beginning of the regular afterglow) marks the transition from the coasting phase to the self-similar expansion phase, which follows the scaling laws first derived by Blandford \& McKee.\cite{BM76}. This result therefore implies that the long GRB progenitors are either (i) not Wolf-Rayet stars, or (ii) the properties of the wind ejected by these stars prior to their final explosion are very different than the properties of the wind ejected at earlier times. This result shows that the range of Lorentz factors in GRB jets is much wider than previously thought, and bridges an observational ‘gap’ between mildly relativistic jets\cite{Ghisellini1993} inferred in active galactic nuclei, $\Gamma_i\lesssim 20$, to the much higher Lorentz factors, $\Gamma_i\lesssim 1000$ inferred in a few extreme GRBs\cite{Racusin+11}.

2013 ◽  
Vol 9 (S304) ◽  
pp. 421-421
Author(s):  
Mara Salvato

AbstracteROSITA (extended Röntgen Survey with an Imaging Telescope Array) is the core instrument on the Russian Spektrum-Röntgen-Gamma (SRG) mission which is current scheduled for launch in Q4 2014. eROSITA will perform a deep survey of the entire X-ray sky. In the soft band (0.5–2 keV), it will be about 30 times more sensitive than ROSAT, while in the hard band (2–8 keV) it will provide the first ever true imaging survey of the sky. The design driving science is the detection of large samples of galaxy clusters up to redshifts z ~ 1, in order to study the large scale structure in the Universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of about 3 million active galactic nuclei, which is bound to revolutionize our view of the evolution of supermassive black holes and their impact on the process of structure formation in the Universe. The survey will also provide new insights into a wide range of astrophysical phenomena, including isolated Neutron Stars and Black Holes, X-ray binaries, active stars and diffuse emission within the Galaxy, as well as more exotic ones such as gamma-ray bursts, tidal disruption of stars in galactic nuclei and binary black holes. In this talk I presented the main characteristics of the mission and focus on the scientific drivers for extragalactic all-sky surveys of AGN. All what was presented at the Symposium (plots, simulations, expected numbers of various kind of sources –QSO, obscured and CT AGN– their properties and evolution with redshift) can be found in the official eROSITA Science Book (Merloni et al., 2012).


2021 ◽  
Author(s):  
Mark Zilberman ◽  

“Doppler boosting” is a well-known relativistic effect that alters the apparent luminosity of approaching radiation sources. “Doppler de-boosting” is the name of relativistic effect observed for receding light sources (e.g. relativistic jets of active galactic nuclei and gamma-ray bursts). “Doppler boosting” changes the apparent luminosity of approaching light sources to appear brighter, while “Doppler de-boosting” causes the apparent luminosity of receding light sources to appear fainter. While “Doppler de-boosting” has been successfully accounted for and observed in relativistic jets of AGN, it was ignored in the establishment of Standard candles for cosmological distances. A Standard candle adjustment of an Z>0.1 is necessary for “Doppler de-boosting”, otherwise we would incorrectly assume that Standard Candles appear dimmer not because of “Doppler de-boosting” but because of the excessive distance, which would affect the entire Standard Candles ladder at cosmological distances. The ratio between apparent (L) and intrinsic (Lo) luminosities as a function of the redshift Z and spectral index α is given by the formula ℳ(Z) = L/Lo=(Z+1)α -3 and for Type Ia supernova appears as ℳ(Z) = L/Lo=(Z+1)-2. “Doppler de-boosting” may also explain the anomalously low luminosity of objects with a high Z without the introduction of an accelerated expansion of the Universe and Dark Energy.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


2020 ◽  
Vol 636 ◽  
pp. L12 ◽  
Author(s):  
E. Järvelä ◽  
M. Berton ◽  
S. Ciroi ◽  
E. Congiu ◽  
A. Lähteenmäki ◽  
...  

It has been often suggested that a tangible relation exists between relativistic jets in active galactic nuclei (AGN) and the morphology of their host galaxies. In particular, relativistic jets may commonly be related to merging events. Here we present for the first time a detailed spectroscopic and morphological analysis of a Seyfert galaxy, SDSS J211852.96−073227.5, at z = 0.26. This source has previously been classified as a gamma-ray emitting narrow-line Seyfert 1 galaxy. We re-observed it with the 6.5 m Clay Telescope and these new, high-quality spectroscopic data have revealed that it is actually an intermediate-type Seyfert galaxy. Furthermore, the results of modelling the Ks-band near-infrared images obtained with the 6.5 m Baade Telescope indicate that the AGN is hosted by a late-type galaxy in an interacting system, strengthening the suggested connection between galaxy interactions and relativistic jets.


1984 ◽  
Vol 110 ◽  
pp. 207-214
Author(s):  
Martin J. Rees

The observed superluminal components have (deprojected) lengths of ~ 1020 cm, and imply relativistic bulk motions on these scales. There are, however, persuasive reasons for attributing the primary energy production to scales 1014–1015 cm. Moreover, the initial bifurcation and collimation must also be imposed on these small scales if the long-term stability of the jet axis in extended sources is due to the gyroscopic effect of a spinning black hole (Rees 1978). The issues I shall address in this talk are: how the jet gets from ~ 1015cm to ~ 1019 cm; and what VLBI data can tell us about the properties of galactic nuclei on scales below ~ 1019 cm — scales where optical and X-ray studies provide some evidence, but where there is no short-term hope of achieving spatial resolution.


2008 ◽  
Vol 17 (09) ◽  
pp. 1343-1349 ◽  
Author(s):  
S. D. VERGANI ◽  
D. MALESANI ◽  
E. MOLINARI

We present observations of the early afterglow emission of GRB 060418. Thanks to the simultaneous coverage at optical, X-ray and gamma-ray wavelengths, we can detect and separate the external shock emission (visible in the optical and late X-ray data) and the central engine activity (early X and gamma rays). The two components are clearly distinguished based on temporal and spectral properties. The detection of the afterglow onset (in the optical) allows the determination of the fundamental fireball properties, namely its bulk Lorentz factor and total energy. The early time X-ray flare closely resembles the prompt emission gamma-ray pulses in its temporal profile, being wider at low energies and showing lags between the hard and soft bands. This provides a strong suggestion that X-ray flares are a continuation of the prompt emission.


2014 ◽  
Vol 28 ◽  
pp. 1460198
Author(s):  
J. HAWKES ◽  
G. ROWELL ◽  
B. DAWSON ◽  
F. AHARONIAN ◽  
M. BURTON ◽  
...  

We probe the interstellar medium towards the objects Circinus X-1, a low-mass X-ray binary with relativistic jets; and the highly energetic Westerlund 2 stellar cluster, which is located towards TeV gamma-ray emission and interesting arc- and jet-like features seen in Nanten 12CO data. We have mapped both regions with the Mopra radio telescope, in 7 mm and 12 mm wavebands, looking for evidence of disrupted/dense gas caused by the interaction between high energy outflows and the ISM. Towards Westerlund 2, peaks in CS(J=1-0) emission indicate high density gas towards the middle of the arc and the endpoint of the jet; and radio recombination line emission is seen overlapping the coincident HII region RCW49. Towards Circinus X-1, 12CO(J = 1-0) Nanten data reveals three molecular clouds that lie in the region of Cir X-1. Gas parameters for each cloud are presented here.


2000 ◽  
Vol 195 ◽  
pp. 133-134
Author(s):  
P. C. H. Martens

Fletcher & Martens have successfully modeled solar hard X-ray sources observed at the top and footpoints of flaring magnetic loops with a Fokker-Planck type particle transport code. I show here that there are invariances in the Fokker-Planck equations that make these results applicable to environments with vastly different physical parameters, such as hard X-ray flares in accretion disks in active galactic nuclei, and in RS CVn and ALGOL type binaries.


1990 ◽  
Vol 115 ◽  
pp. 262-273
Author(s):  
Julian H. Krolik

AbstractHigh-resolution X-ray spectroscopy has the potential to reveal a number of interesting features of active galactic nuclei, primarily, though not exclusively, through the measurement of absorption lines. After a brief review of the principal problems of AGN research, selected potential high-resolution observations are discussed with a view toward assessing their scientific value and the degree of resolution they will require. Two classes of observations pertaining directly to AGNs are discussed: Fe Kα spectroscopy relevant to the dynamical and thermal character of the emission line zones; and measurement of resonance line absorption by highly-ionized species in BL Lac objects, which should tell us about entrainment of interstellar material by relativistic jets. A third class of potentially important observations uses AGNs as background light sources in order to directly measure the distance to clusters of galaxies.


2012 ◽  
Vol 08 ◽  
pp. 259-264 ◽  
Author(s):  
K.-I. NISHIKAWA ◽  
J. NIEMIEC ◽  
B. ZHANG ◽  
M. MEDVEDEV ◽  
P. HARDEE ◽  
...  

Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.


Sign in / Sign up

Export Citation Format

Share Document