AN EXACT SOLUTION OF THE TRANSIENT TEMPERATURE DISTRIBUTION IN A SPHERICAL REGION SUBJECTED TO AN ARBITRARY HEAT FLUX

1965 ◽  
Author(s):  
Richard A. Matula
1961 ◽  
Vol 28 (1) ◽  
pp. 25-34 ◽  
Author(s):  
C. K. Youngdahl ◽  
Eli Sternberg

This paper contains an exact solution for the transient temperature distribution, as well as for the accompanying quasi-static thermal stresses and deformations, which arise in an infinitely long elastic circular shaft if its surface temperature undergoes a sudden uniform change over a finite band between two cross sections and is steadily maintained thereafter. The solution given is in the form of definite integrals and infinite series, whose convergence is discussed. Extensive illustrative numerical results are included.


1969 ◽  
Vol 36 (1) ◽  
pp. 113-120 ◽  
Author(s):  
T. R. Hsu

This paper contains an exact solution for the transient temperature distribution and the associated quasi-static thermal stresses and deformations which arise in a finite circular disk subjected to an instantaneous point heat source acting on its periphery. The solutions given are in the form of double infinite series, and extensive illustrative numerical results are included. The solutions are pertinent to problems which occur in welding engineering and in modern nuclear technology.


Author(s):  
Keiya Fujimoto ◽  
Hiroaki Hanafusa ◽  
Takuma Sato ◽  
Seiichiro HIGASHI

Abstract We have developed optical-interference contactless thermometry (OICT) imaging technique to visualize three-dimensional transient temperature distribution in 4H-SiC Schottky barrier diode (SBD) under operation. When a 1 ms forward pulse bias was applied, clear variation of optical interference fringes induced by self-heating and cooling were observed. Thermal diffusion and optical analysis revealed three-dimensional temperature distribution with high spatial (≤ 10 μm) and temporal (≤ 100 μs) resolutions. A hot spot that signals breakdown of the SBD was successfully captured as an anormal interference, which indicated a local heating to a temperature as high as 805 K at the time of failure.


2021 ◽  
Vol 141 (11) ◽  
pp. 712-717
Author(s):  
Akira Daibo ◽  
Yoshimitsu Niwa ◽  
Naoki Asari ◽  
Wataru Sakaguchi ◽  
Yo Sasaki ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2935 ◽  
Author(s):  
Sayantan Ganguly

An exact integral solution for transient temperature distribution, due to injection-production, in a heterogeneous porous confined geothermal reservoir, is presented in this paper. The heat transport processes taken into account are advection, longitudinal conduction and conduction to the confining rock layers due to the vertical temperature gradient. A quasi 2D heat transport equation in a semi-infinite porous media is solved using the Laplace transform. The internal heterogeneity of the geothermal reservoir is expressed by spatial variation of the flow velocity and the effective thermal conductivity of the medium. The model results predict the transient temperature distribution and thermal-front movement in a geothermal reservoir and the confining rocks. Another transient solution is also derived, assuming that longitudinal conduction in the geothermal aquifer is negligible. Steady-state solutions are presented, which determine the maximum penetration of the cold water thermal front into the geothermal aquifer.


Sign in / Sign up

Export Citation Format

Share Document