Development and Deployment of In-Situ Mass Spectrometers

2003 ◽  
Author(s):  
R. T. Short ◽  
David P. Fries ◽  
Robert H. Byrne
Keyword(s):  
2002 ◽  
Author(s):  
R. T. Short ◽  
Gottfried P. Kibelka ◽  
David P. Fries ◽  
Robert H. Byrne
Keyword(s):  

2021 ◽  
Author(s):  
Ralf Srama ◽  
Jon K. Hillier ◽  
Sean Hsu ◽  
Sascha Kempf ◽  
Masanori Kobayashi ◽  
...  

<p>The Cosmic Dust Analyzer (CDA) onboard Cassini characterized successfully the dust environment at Saturn from 2004 to 2017. Besides the study of Saturn’s E ring and its interaction with the embedded moons, CDA detected nanoparticles in the outer Saturn system moving on unbound orbits and originating primarily from Saturn’s E-ring. Although the instrument was built to detect micron and sub-micron sized particles, nano-sized grains were detected during the flyby at early Jupiter and in the outer environment at Saturn. Fast dust particles with sizes below 10 nm were measured by in-situ impact ionization and mass spectra were recorded. What are the limits of in-situ hypervelocity impact detection and what can be expected with current high-resolution mass spectrometers as flown onboard the missions DESTINY+ or EUROPA? Is the sensitivity of Dust Telescopes sufficient to detect nano-diamonds in interstellar space? This presentation summarizes the current experience of in-situ dust detectors and gives a prediction for future missions. In summary, current Dust Telescopes with integrated high-resolution mass spectrometers are more sensitive than the CASSINI Cosmic Dust Analyzer.</p>


Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1052
Author(s):  
Petr G. Lokhov ◽  
Oxana P. Trifonova ◽  
Dmitry L. Maslov ◽  
Elena E. Balashova

In metabolomics, mass spectrometry is used to detect a large number of low-molecular substances in a single analysis. Such a capacity could have direct application in disease diagnostics. However, it is challenging because of the analysis complexity, and the search for a way to simplify it while maintaining the diagnostic capability is an urgent task. It has been proposed to use the metabolomic signature without complex data processing (mass peak detection, alignment, normalization, and identification of substances, as well as any complex statistical analysis) to make the analysis more simple and rapid. Methods: A label-free approach was implemented in the metabolomic signature, which makes the measurement of the actual or conditional concentrations unnecessary, uses only mass peak relations, and minimizes mass spectra processing. The approach was tested on the diagnosis of impaired glucose tolerance (IGT). Results: The label-free metabolic signature demonstrated a diagnostic accuracy for IGT equal to 88% (specificity 85%, sensitivity 90%, and area under receiver operating characteristic curve (AUC) of 0.91), which is considered to be a good quality for diagnostics. Conclusions: It is possible to compile label-free signatures for diseases that allow for diagnosing the disease in situ, i.e., right at the mass spectrometer without complex data processing. This achievement makes all mass spectrometers potentially versatile diagnostic devices and accelerates the introduction of metabolomics into medicine.


Author(s):  
Jurij Simcic ◽  
Dragan Nikolic ◽  
Anton Belousov ◽  
David Atkinson ◽  
Stojan Madzunkov

<p>To date a variety of different types of Mass Spectrometers has been utilized on missions to study the composition of atmospheres of many solar system bodies including Venus, Mars, Jupiter, Titan, the moon and several comets. For in-situ exploration of ice giant atmospheres, the highest priority composition measurements are helium and the other noble gases, noble gas isotopes, and other key isotopes including <sup>3</sup>He/<sup>4</sup>He and D/H. Other important but lower priority composition measurements include abundances of volatiles C, N, S, and P, isotopes <sup>13</sup>C/<sup>12</sup>C, <sup>15</sup>N/<sup>14</sup>N, <sup>18</sup>O/<sup>17</sup>O/<sup>16</sup>O and disequilibrium species PH<sub>3</sub>, CO, AsH<sub>3</sub>, GeH<sub>4</sub>, and SiH<sub>4</sub>. Required measurement accuracies are largely defined by the accuracies achieved by the Galileo (Jupiter) probe Neutral Mass Spectrometer and Helium Abundance Detectors, and current measurement accuracies of solar abundances<sup>[1]</sup>.</p><p>The Jet Propulsion Laboratory’s Quadrupole Ion Trap Mass Spectrometer (QITMS)<sup>[2] </sup>is a compact, wireless instrument with a mass of only 7.5 kg, designed to meet these requirements and challenges specific to the planetary probe missions. It is currently the smallest flight MS available, capable of making measurements of all required constituents in the mass range 1-600Da, with a sensitivity of up to 10<sup>13</sup> counts/mbar/sec and resolution of m/∆m=12000 at 40Da.</p><p>During a fly-by or a descent mission, the time available to perform an in-situ measurement is usually short. This makes it challenging to measure the abundances of minor constituents for which long integration times are needed. Mass spectrometers largely employ a non-discriminatory electron impact ionization of sampled gas mixtures for creating ions, which means the probability to create and trap ion fragments of trace species is very low and further destabilized by space charge effects due to an excessive number of ions from dominant species. A selective resonant ejection technique was employed to lower the amount of major constituent species, while keeping the minor constituents intact, which resulted in higher accuracy measurements of minor species.</p><p>Another inherent challenge of planetary entry probe mass spectrometers is the introduction of material to be sampled into the instrument interior, which operates at vacuum. Atmospheric entry probe mass spectrometers typically require a specially designed sample inlet system, which ideally provides highly choked, nearly constant mass-flow intake over a large range of ambient pressures. An ice giant descent probe would have to operate over a range of atmospheric pressures covering 2 or more orders of magnitude, 100 mb to 10+ bars, in an atmospheric layer of ~120 km at Neptune to ~150 km at Uranus. The QITMS features a novel MEMS based inlet system driven by a piezo-electric actuator that continuously regulates gas flow at inlet pressures of up to 100 bar.</p><p>In this paper, we present an overview of the QITMS capabilities including instrument design and characteristics of the inlet system, as well as the most recent results from laboratory measurements in different modes of operation.</p><p>[1] Mousis, O., et al., Pl. Sp. Sci., 155 12–40, 2018.</p><p>[2] Madzunkov, S.M., Nikolic, D., J. Am. Soc. Mass Spectrom. 25(11), 2014.</p>


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1007
Author(s):  
Junqing Pan ◽  
Tagen Dai ◽  
Dexian Zhang ◽  
Wenshen Li ◽  
Richard C. Bayless ◽  
...  

The Chuankou tungsten ore field is situated in the central area of the Xuefeng Uplift Belt in South China. The deposit is characterized by two types of tungsten mineralization: quartz-scheelite veins in both the Neoproterozoic Banxi Group and Devonian Yanglin’ao Formation and quartz-wolframite (scheelite) veins in the Chuankou granite. The host rocks of the Chuankou tungsten Deposit of South China are similar to the stratigraphic sequence of Au-Sb-W deposits in the Xuefeng Uplift Belt. It is thus an appropriate location for the study of scheelite mineralization in the belt, especially the relative contributions of surrounding rocks, magma and hydrothermal fluids. Optical Microscope-Cathodoluminescene (OM-CL) and Laser Ablation Inductively Coupled Mass Spectrometers (LA ICPMS) were used to examine scheelite textures and trace element concentrations in the Chuankou deposits. Scheelite in quartz-scheelite veins was formed over three generations. In situ LA-ICPMS trace elemental analyses of scheelite I show light rare earth element (LREE)-rich REE patterns and negative Eu anomalies, suggesting a relatively close fluid system. Significantly positive Eu anomalies of scheelite II and III indicate variable degrees of addition of meteoric water during scheelite precipitation. Therefore, ore-forming fluids of the Chuankou deposit were dominantly magma-derived, with different contributions of recycled meteoric water in the surrounding strata.


Author(s):  
Allen J. Schaen ◽  
Brian R. Jicha ◽  
Kip V. Hodges ◽  
Pieter Vermeesch ◽  
Mark E. Stelten ◽  
...  

The 40Ar/39Ar dating method is among the most versatile of geochronometers, having the potential to date a broad variety of K-bearing materials spanning from the time of Earth’s formation into the historical realm. Measurements using modern noble-gas mass spectrometers are now producing 40Ar/39Ar dates with analytical uncertainties of ∼0.1%, thereby providing precise time constraints for a wide range of geologic and extraterrestrial processes. Analyses of increasingly smaller subsamples have revealed age dispersion in many materials, including some minerals used as neutron fluence monitors. Accordingly, interpretive strategies are evolving to address observed dispersion in dates from a single sample. Moreover, inferring a geologically meaningful “age” from a measured “date” or set of dates is dependent on the geological problem being addressed and the salient assumptions associated with each set of data. We highlight requirements for collateral information that will better constrain the interpretation of 40Ar/39Ar data sets, including those associated with single-crystal fusion analyses, incremental heating experiments, and in situ analyses of microsampled domains. To ensure the utility and viability of published results, we emphasize previous recommendations for reporting 40Ar/39Ar data and the related essential metadata, with the amendment that data conform to evolving standards of being findable, accessible, interoperable, and reusable (FAIR) by both humans and computers. Our examples provide guidance for the presentation and interpretation of 40Ar/39Ar dates to maximize their interdisciplinary usage, reproducibility, and longevity.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 354 ◽  
Author(s):  
Huzhong Zhang ◽  
Detian Li ◽  
Peter Wurz ◽  
Adrian Etter ◽  
Yongjun Cheng ◽  
...  

Low energy ion measurements in the vicinity of a comet have provided us with important information about the planet’s evolution. The calibration of instruments for thermal ions in the laboratory plays a crucial role when analysing data from in-situ measurements in space. A new low energy ion source based on carbon nanotube electron emitters was developed for calibrating the ion-mode of mass spectrometers or other ion detectors. The electron field emission (FE) properties of carbon nanotubes (CNTs) for H2, He, Ar, O2, and CO2 gases were tested in the experiments. H2, He, Ar, and CO2 adsorbates could change the FE temporarily at pressures from10−6 Pa to10−4 Pa. The FE of CNT remains stable in Ar and increases in H2, but degrades in He, O2, and CO2. All gas adsorbates lead to temporary degradation after working for prolonged periods. The ion current of the ion source is measured by using a Faraday cup and the sensitivity is derived from this measurement. The ion currents for the different gases were around 10 pA (corresponding to 200 ions/cm3 s) and an energy of ~28 eV could be observed.


2021 ◽  
Vol 11 (24) ◽  
pp. 11762
Author(s):  
Taekyung Ha ◽  
Hyunjung Shin

In semiconductor manufacturing, fault detection is an important method for monitoring equipment condition and examining the potential causes of a fault. Vacuum leakage is considered one of the major faults that can occur in semiconductor processing. An unnecessary O2 and N2 mixture, a major component of the atmosphere, creates unexpected process results and hence drops in yield. Vacuum leak detection systems that are currently available in the vacuum industry are based on helium mass spectrometers. They are used for detecting the vacuum leakage at the sole isolation condition where the chamber is fully pumped but cannot be used for in situ detection while the process is ongoing in the chamber. In this article, a chamber vacuum leak detection method named Index Regression and Correction (IRC) is presented, utilizing common data which were gathered during normal chamber operation. This method was developed by analyzing a simple list of data, such as pressure, the temperature of the chamber body, and the position of the auto pressure control (APC), to detect any leakages in the vacuum chamber. The proposed method was experimentally verified and the results showed a high accuracy of up to 97% when a vacuum leak was initiated in the chamber. The proposed method is expected to improve the process yield of the chamber by detecting even small vacuum leakages at very early stages of the process.


2020 ◽  
Author(s):  
Megan S. Claflin ◽  
Demetrios Pagonis ◽  
Zachary Finewax ◽  
Anne V. Handschy ◽  
Douglas A. Day ◽  
...  

Abstract. We have developed a field-deployable gas chromatograph (GC) with thermal desorption preconcentration (TDPC), which is demonstrated here with automatic detector switching between two high-resolution time-of-flight mass spectrometers (TOF-MS) for in situ measurements of volatile organic compounds (VOCs). This system provides many analytical advances including acquisition of fast time-response data in tandem with molecular speciation and two types of mass spectral information for each resolved GC peak: molecular ion identification from Vocus proton transfer reaction (PTR) TOF-MS and fragmentation pattern from electron ionization (EI) TOF-MS detection. This system was deployed during the 2018 ATHLETIC campaign at the University of Colorado Dal Ward Athletic Center in Boulder, Colorado where it was used to characterize VOC emissions in the indoor environment. The addition of the TDPC-GC increased the Vocus sensitivity by a factor of 50 due to preconcentration over a 6 min GC sample time versus direct air sampling with the Vocus which was operated with a time resolution of 1 Hz. The GC-TOF methods demonstrated average limits of detection of 1.6 ppt across a range of monoterpenes and aromatics. Here, we describe the method to use the two-detector system to conclusively identify a range of VOCs including hydrocarbons, oxygenates and halocarbons, along with detailed results including the quantification of anthropogenic monoterpenes, where limonene accounted for 47–80 % of the indoor monoterpene composition. We also report the detection of dimethylsilanediol (DMSD), an organosiloxane degradation product, which was observed with dynamic temporal behavior distinct from volatile organosiloxanes (e.g. decamethylcyclopentasiloxane, D5 siloxane). Our results suggest DMSD is produced from humidity-dependent, heterogeneous reactions occurring on surfaces in the indoor environment, rather than formed through gas-phase oxidation of volatile siloxanes.


Sign in / Sign up

Export Citation Format

Share Document