The diffusion coefficients 110mAg isotope in copper-contained chalcogenide films obtained by chemical deposition

Author(s):  
Д.Л. Байдаков

Методом химического нанесения из растворов халькогенидных стекол в н-бутиламине получены многокомпонентные халькогенидные пленки CuI-As2Se3, CuI-PbI2-As2Se3, CuI-SbI3-As2Se3, CuI-SbI3-PbI2-As2Se3. Синтез многокомпонентных медьсодержащих халькогенидных стекол, использовавшихся для нанесения пленок, проводили методом вакуумной плавки в кварцевых ампулах при температуре 400…950 °С и остаточном давлении не более 0,13 Па. Закалку стекол производили от 600 °С в воду со льдом с разливом расплава в ампуле. Навеску стекла размельчали в порошок и кипятили в н-бутиламине до полного растворения. Для предотвращения процессов окисления, нанесение и отжиг пленок проводили в атмосфере химически инертного азота. Подложку помещали на устройство для вращения, наносили на нее раствор и вращали подложку со скоростью несколько тысяч оборотов в минуту. Отжиг пленок проводили при температуре 100 °С в течение 1 ч. Измерение электропроводности полученных пленок проводили на постоянном и переменном токе в зависимости от значений электропроводности в температурном интервале 20…100 °С. Измерение коэффициентов диффузии проводили абсорбционным методом. Из диффузионных экспериментов определены значения коэффициентов диффузии катионов изотопа 110mAg в медьсодержащих халькогенидных пленках. Установлено, что значения коэффициентов диффузии ионов Ag+ в химически нанесенных пленках и исходных стеклах практически не различаются. Аналогию значений коэффициентов диффузии изотопа 110mAg в халькогенидных стеклах и пленках на их основе можно объяснить сохранением полимерной сетки связей халькогенидных стекол при их растворении в органических основаниях (аминах). В процессе нанесения и формирования пленок полимерная (макромолекулярная) структура раствора халькогенидных стекол сохраняется. The method of chemical deposition from solutions of chalcogenide glasses in n-butyl amine obtained multicomponent chalcogenide films CuI-As2Se3, CuI-PbI2-As2Se3, CuI-SbI3-As2Se3, CuI-SbI3-PbI2-As2Se3. Synthesis of copper multicomponent chalcogenide glasses, used for film deposition was carried out by vacuum melting in quartz ampoule at a temperature of 400…950 °C and a residual pressure of not more than 0.13 Pa. The temperature of glass produced from the 600 °C to the ice water spill of the melt in the ampoule. Weigh glass comminuted to a powder and heated in n-butylamine until complete dissolution. To prevent oxidation, deposition and annealing of the films was carried out in an atmosphere of nitrogen chemically inert. The substrate is placed on a device for rotating, it was applied to the solution and the substrate was rotated at a speed of several thousand revolutions per minute. Annealing of the films was carried out at 100 °C for 1 hour. Measurement of the electrical conductivity of the obtained films was conducted at a constant current and variable depending on the conductivity values ​​in the temperature range from 20 to 100 °C. Measurement of diffusion coefficients was performed according to the absorption method. From diffusion experiments, the values ​​of the diffusion coefficients 110mAg isotope cations in copper chalcogenide films. It was found that the values ​​of the diffusion coefficients of the ions Ag+ in a chemically deposited films and the original glasses are indistinguishable. The analogy of the diffusion coefficient values ​​110mAg isotope in chalcogenide glasses and films based on them can be attributed to the preservation of the polymer network connections chalcogenide glasses when dissolved in organic bases (amines). During application and film formation the polymer (macromolecular) structure of chalcogenide glasses of the solution is maintained.

Author(s):  
Д.Л. Байдаков ◽  
Ю.Т. Виграненко

Методом химического нанесения из растворов халькогенидных стекол в н-бутиламине получены халькогенидные пленки PbS-AgI-As2S3, PbS-Ag2S-As2S3 и PbI2-Ag2S-As2S3, изучена электропроводность и электродные свойства стекол и пленок аналогичного состава. Синтез стекол проводили согласно методике, описанной в [Легин, 1985]. Пленки наносили по следующей методике. Навеску стекла помещали в кипящий н-бутиламин, затем перемешивали в течение 3–4 ч до полного растворения стекла в амине. Для предотвращения окисления кислородом воздуха пленки наносили в закрытом боксе в атмосфере азота. Подложку помещали на устройство для вращения, наносили на нее раствор, а затем вращали подложку со скоростью 3000–4000 об/мин в течение 1 мин. Отжиг пленок проводили в боксе при температуре 90–100 С в течение 30–60 мин. Исследована электропроводность халькогенидных пленок PbS-AgI-As2S3, PbS-Ag2S-As2S3 и PbI2-Ag2S-As2S3. Величина электропроводности составляет 10–14–10–4 Ом.см–1. Установлено, что значения электропроводности стекол и пленок аналогичного состава практически не отличаются. Электроды с пленочными мембранами PbS- Ag2S-As2S3 и PbI2-Ag2S-As2S3 показали высокую чувствительность к катионам Pb2+. Нернстовская область электродного отклика лежит в пределах 10–2–10–6 моль/л нитрата свинца, предел обнаружения достигает 10–7 моль/л. Тонкопленочные электроды с мембранами PbS-AgI-As2S3 продемонстрировали достаточно высокую чувствительность к катионам Ag+. Нернстовская область электродного отклика составляет 10–1–10–6 моль/л AgNO3, предел обнаружения катионов серебра достигает 10–7 моль/л. Электродные свойства халькогенидных стекол и пленок аналогичного состава практически не отличаются. Chalcogenide films PbS-AgI-As2S3, PbS-Ag2S-As2S3 and PbI2-Ag2S-As2S3, were synthesized from the solutions of chalcogenide glasses in n-butylamine. The electrical conductivity and electrode properties of glasses and films of the same compositions were studied. The synthesis of glasses was carried out according to the procedure described in [Legin, 1985]. The films were prepared as follows. The sample of the glass was placed in boiling n-butylamine, then stirred for 3–4 hours until the glass was completely dissolved in the amine. To prevent oxidation by air oxygen, the films were applied in a closed box under a nitrogen atmosphere. The substrate was placed on a rotating device, a solution was applied thereto, and then the substrate was rotated at a speed of 3000–4000 rpm for 1 minute. Annealing of the films was carried out in the box at a temperature of 90–100 C for 30–60 min. Electrodes with membranes PbS-Ag2S-As2S3 and PbI2-Ag2S-As2S3 showed high sensitivity to cations Pb2+. The Nernst region of the electrode response lies in the range 10–2–10–6 mol/l lead nitrate, and the detection limit reaches 10–7 mol/l. Thin film electrodes with PbS-AgI-As2S3 membranes showed a fairly high sensitivity to the Ag+ cations. The Nernst region of the electrode response is 10–1–10–6 mol/l silver nitrate, the detection limit of Ag+ cations reaches 10–7 mol/l. It has been established that the electrode properties of chalcogenide glasses and films of similar composition are practically the same.


1998 ◽  
Vol 514 ◽  
Author(s):  
G. H. Gilmer ◽  
F. H. Baumann ◽  
T. Diaz de la Rubia

ABSTRACTWe discuss simulators of the deposition of metal films onto substrates containing vias and trenches. Our Monte Carlo simulations of Al are based on extensive first-principles and molecular dynamics (MD) data for atomic-level energetics and transport rates. We find that surface mobilities are highly anisotropic, and that this has a pronounced influence on film morphology. We have investigated the effects of faceting and grain boundary grooving on step coverage, together with the variation of morphology with deposition rate, temperature, and length scale. Mass transport across low index facets is extremely slow near equilibrium, and this can inhibit the smoothening of surfaces and the elimination of depressions during annealing. The MC model also predicts grain structures during polycrystalline film formation, and the generation of preferred crystallographic orientations (texture). We present MC simulations for a range of conditions, and provide comparisons with experiments on the sputter deposition of Al and TiN films. Results from the MC model are being incorporated into a continuum model based on level-set methods, and we expect that this will form the basis for a simulator that can efficiently explore a wide range of conditions.


2012 ◽  
Vol 1440 ◽  
Author(s):  
A.L. Michan ◽  
G.T.M. Nguyen ◽  
O. Fichet ◽  
F. Vidal ◽  
C. Vancaeyzeele ◽  
...  

ABSTRACTSolid electrolyte materials have the potential to improve performance and safety characteristics of lithium-ion batteries by replacing conventional solvent-based electrolytes. A candidate solid polymer electrolyte, AMLi/PEGDM, has been synthesized by crosslinking an anionic monomer AMLi, with poly(ethylene glycol) dimethacrylate. The main goal of the synthesis is to produce a single-ion conducting polymer network where lithium cations can move freely and fluorinated anions are immobilized as part of the polymer network. A comprehensive characterization of anion and cation mobility in the resulting material is therefore required. Using pulsed-field gradient nuclear magnetic resonance (PFG-NMR), we are able to measure and quantify the individual diffusion coefficients of mobile species in the material (19F and 7Li) and confirm the extent to which the fluorinated anionic component is immobilized. We have characterized dry (σ~3.0 x10-7 S/cm at 30°C) and propylene carbonate (PC) saturated gel (σ~1.0x10-4 S/cm at 30°C) samples. Experimental results include NMR spin-spin and spin-lattice relaxation times in addition to diffusion coefficient measurements over a temperature range up to 100°C. Practically, the diffusion measurements are extremely challenging, as the spin-spin (T2) relaxation times are very short, necessitating the development of specialized pulsed-field gradient apparatus. Diffusion coefficients for the most mobile components of the lithium cations and fluorinated anions at 100°C in dry membranes have been found to be 3.4 x10-8 cm2/s and 2.1 x10-8 cm2/s respectively. These results provide valuable insight into the conduction mechanisms in these materials, and will drive further optimization of solid polymer electrolytes.


Author(s):  
Peter Ifeolu Odetola ◽  
Patricia A. P. Popoola ◽  
Philip Oladijo

Advances in thin-film deposition expose new frontiers to structures and phases that are inaccessible by conventional chemical means and have led to innovative modification of existing materials' properties. Thin-film deposition by magnetron sputtering is highly dependent on ion bombardments; coupled with sublimation of solid target unto the substrate through momentum transfer. It is summarily base on phase change of target material under high-energy influence; corresponding controlled condensation of sputtered atoms on substrate material during which process parameters and growth conditions dictate the pace of the atomic scale processes for thin-film formation. Magnetron sputtering is a state-of-the-art thin film deposition technique versatile for several unique applications, especially in the semiconductor industry. Magnetron sputtering is very novel in its use to achieve low-pressure condition that maximizes and conserve stream of electrons for effective knocking of inert atoms into ions. This ensures the high-energy acquired is not dissipated in gas-phase collisions.


Author(s):  
Fredrick M. Mwema ◽  
Esther T. Akinlabi ◽  
Oluseyi Philip Oladijo

In this chapter, the current state of the art in optimization of thin film deposition processes is discussed. Based on the reliable and credible published results, the study aims to identify the applications of various optimization techniques in the thin film deposition processes, with emphasis on physical deposition methods. These methods are chosen due to their attractive attributes over chemical deposition techniques for thin film manufacturing. The study identifies the critical parameters and factors, which are significant in designing of the optimization algorithms based on the specific deposition methods. Based on the specific optimization studies, the chapter provides general trends, optimization evaluation criteria, and input-output parameter relationships on thin film deposition. Research gaps and directions for future studies on optimization of physical vapor deposition methods for thin film manufacturing are provided.


Sign in / Sign up

Export Citation Format

Share Document