scholarly journals Genotype-by-environment Interaction in Musa Germplasm Revealed by Multi-site Evaluation in Sub-saharan Africa

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 795E-795 ◽  
Author(s):  
Rodomiro Ortiz ◽  
Dirk Vuylsteke

Two multilocational trials, one comprising 18 Musa clones in three locations and another of 20 genotypes across 11 locations, were set up in 1991 and 1992, respectively, to assess the genotype-by-environment interaction (GxE) for important traits and to select stable high-yielding and black sigatoka (BS)-resistant genotypes. Combined ANOVAs showed significant differences among environments and among genotypes for all traits. GxE affected all growth and yield parameters, except fruit girth. Host response to BS disease also showed significant GxE, but there was no cross-order season-by-year interaction. Hence, genotypic response to BS can be assessed in 1 year during the rainy season, when disease pressure is highest. Genotype-by-location effects were more important than the nonsignificant genotype-by-year effects, supporting the need for multilocational trials. Stability analysis showed that full-sib plantain hybrids (TMPx1) exhibited different host responses to BS as well as different interaction patterns, suggesting that selection for stable BS resistance is possible. The BS-resistant TMPx genotypes had higher yields than the plantain landraces, but showed differences in yield stability. TMPx 1658-4, 2796-5, 5511-2, and 6930-1 have been selected as stable high-yielding hybrids, while the initial best selections (TMPx 548-4 and 548-9) were top yielders only in good environments. [Vuylsteke, D., R. Swennen, and R. Ortiz. 1993. Registration of 14 improved tropical Musa plantain hybrids with black sigatoka resistance. HortScience 28:957–959.]

2016 ◽  
Vol 67 (7) ◽  
pp. 792
Author(s):  
M. R. Dehghani ◽  
M. M. Majidi ◽  
A. Mirlohi ◽  
G. Saeidi

Development of forage grass genotypes which maintain a high level of performance over a wide range of environments is a goal of most breeding programs. In this study the additive main effects and multiplicative interactions (AMMI) model analysis was used to understand the complexity of genotype by environment interaction and to evaluate the adaptability and yield stability of some tall fescue genotypes and their selected polycross progenies. Replicated forage yield data of 72 genotypes (24 parental, 24 early flowering and 24 late flowering progenies) from six main cropping seasons (2008–14) at two locations and under two levels of irrigation were used for this purpose. The AMMI-1 analysis results accounted for 47.6% of the genotype by environment interaction. Interaction patterns revealed by AMMI-1 biplots indicated that most of the tall fescue genotypes were narrowly adapted and among all evaluated genotypes, only four genotypes (G22, G50, G62 and G65) with yield performance above the average were considered broadly adapted. The AMMI-1 mega-environment analysis indicated that all the environments in Lavark were grouped in one mega-environment, except for E1 and E2. For this mega-environment the winning genotypes were the genotypes G9, G48 and G72. The environments in Isfahan location, except for E13, were grouped in another mega-environment. The genotypes G23, G8 and G15 were the winners in this mega-environment.


2021 ◽  
Author(s):  
Gemechu Getachew ◽  
Beyene Abebe ◽  
Deselegn Chelchisa ◽  
Sara Oli ◽  
Temesgen Chebsa ◽  
...  

Abstract The current research examined the magnitude of genotype by environment interaction (G x E) and evaluated the adaptability and stability of maize genotypes for grain yield in Ethiopia's transitional highland agroecology using an additive main effects and multiplicative interaction (AMMI) model. The study's goals were to first assess the yield output and stability of maize genotypes in Ethiopia's transitional highlands, and then to investigate the effect of genotype- environment interaction on genotype yield. During the main season of 2017/2018, thirteen advanced maize genotypes which was selected from different observation trials with two commercial check hybrids were evaluated at five representative locations for agroecology. The experiment was set up using an alpha lattice (3*5) with three replications and two rows per plot. AMMI showed highly significant(P < 0.001) variation of grain yield was observed due to the effect of genotype (G), Environment(E) and their interaction (G x E). In fact, all genotypes evaluated in representative locations for this agroecology had higher grain yield advantages than the best commercial check except one genotype. Overall, this study discovered the possibility of fast releasing and overtake of new maize hybrids for transitional high land agroecology of Ethiopia to exploits availability maize germplasm to maximize production. The best candidate genotype, MABK181261 is a stable and high-yielding product. It is recommended for release as a commercial hybrid alternative after national variety verification trial in a high land transitional agroecology of Ethiopia. In addition, the parental lines of this genotypes can be used to enhance germplasm of opposite heterotic group in maize breeding for East Africa.


Genetika ◽  
2010 ◽  
Vol 42 (3) ◽  
pp. 545-555
Author(s):  
Sofija Petrovic ◽  
Miodrag Dimitrijevic ◽  
Milivoj Belic ◽  
Borislav Banjac ◽  
Jelena Boskovic ◽  
...  

The paper presents the results of experiments with 11 varieties of wheat grown in alkaline soil stressful conditions. The experiment was set up at the site in the Banat, on the non-ameliorated solonetz soil, as control variante, and with ameliorative measures using phosphogypsum. The phenotypic variability and genotype by environment interaction for the grain number and weight per spike, using AMMI model in three vegetation seasons were studied. The analysis of the results revealed that the tested varieties responded differently to external, stressful conditions and ameliorative measures. Based on the AMMI analysis results the significance of PCA axis was observed.


Author(s):  
Om Prakash Yadav ◽  
A. K. Razdan ◽  
Bupesh Kumar ◽  
Praveen Singh ◽  
Anjani K. Singh

Genotype by environment interaction (GEI) of 18 barley varieties was assessed during two successive rabi crop seasons so as to identify high yielding and stable barley varieties. AMMI analysis showed that genotypes (G), environment (E) and GEI accounted for 1672.35, 78.25 and 20.51 of total variance, respectively. Partitioning of sum of squares due to GEI revealed significance of interaction principal component axis IPCA1 only On the basis of AMMI biplot analysis DWRB 137 (41.03qha–1), RD 2715 (32.54qha–1), BH 902 (37.53qha–1) and RD 2907 (33.29qha–1) exhibited grain yield superiority of 64.45, 30.42, 50.42 and 33.42 per cent, respectively over farmers’ recycled variety (24.43qha–1).


2021 ◽  
Author(s):  
Vander Fillipe Souza ◽  
Pedro César de Oliveira Ribeiro ◽  
Indalécio Cunha Vieira Júnior ◽  
Isadora Cristina Martins Oliveira ◽  
Cynthia Maria Borges Damasceno ◽  
...  

2021 ◽  
Author(s):  
Siti Marwiyah ◽  
Willy Bayuardi Suwarno ◽  
Desta Wirnas ◽  
Trikoesoemaningtyas xxx ◽  
Surjono Hadi Sutjahjo

2019 ◽  
Vol 44 (3) ◽  
pp. 501-512
Author(s):  
S Sultana ◽  
HC Mohanta ◽  
Z Alam ◽  
S Naznin ◽  
S Begum

The article presents results of additive main effect and multiplicative interaction (AMMI) and genotype (G) main effect and genotype by environment (GE) interaction (G × GE) biplot analysis of a multi environmental trial (MET) data of 15 sweetpotato varieties released from Bangladesh Agricultural Research Institute conducted during 2015–2018. The objective of this study was to determine the effects of genotype, environment and their interaction on tuber yield and to identify stable sweetpotato genotypes over the years. The experimental layout was a randomized complete block design with three replications at Gazipur location. Combined analysis of variance (ANOVA) indicated that the main effects due to genotypes, environments and genotype by environment interaction were highly significant. The contribution of genotypes, environments and genotype by environment interaction to the total variation in tuber yield was about 60.16, 10.72 and 12.82%, respectively. The first two principal components obtained by singular value decomposition of the centred data of yield accounted for 100% of the total variability caused by G × GE. Out of these variations, PC1 and PC2 accounted for 71.5% and 28.5% of variability, respectively. The study results identified BARI Mistialu- 5, BARI Mistialu- 14 and BARI Mistialu- 15 as the closest to the “ideal” genotype in terms of yield potential and stability. Varieties ‘BARI Mistialu- 8, BARI Mistialu- 11 and BARI Mistialu- 12’ were also selected as superior genotypes. BARI Mistialu- 3 and BARI Mistialu- 13 was comparatively low yielder but was stable over the environment. Among them BARI Mistialu-12, BARI Mistialu-14 and BARI Mistialu-15 are rich in nutrient content while BARI Mistialu-8 and BARI Mistialu-11 are the best with dry matter content and organoleptic taste. Environments representing in 1st and 3rd year with comparatively short vectors had a low discriminating power and environment in 2nd year was characterized by a high discriminating power. Bangladesh J. Agril. Res. 44(3): 501-512, September 2019


1970 ◽  
Vol 12 (3) ◽  
pp. 627-634
Author(s):  
J. S. Gavora ◽  
G. C. Hodgson

Traditionally genotype by environment interaction studies have dealt with changes in external environment. In this experiment an attempt was made to alter internal environment and keep external environment constant. Cockerels from each of six different commercial stocks were injected with 0,1,2 and 4 mgs hydrocortisone acetate per 100 gms body weight at 14 days of age. This type of hormonal treatment was shown to release additional variability in growth without producing any stock-treatment interaction at the level of means. The results indicate a possible new avenue for future research.


2018 ◽  
Vol 58 (11) ◽  
pp. 1996
Author(s):  
S. Ribeiro ◽  
J. P. Eler ◽  
V. B. Pedrosa ◽  
G. J. M. Rosa ◽  
J. B. S. Ferraz ◽  
...  

In the present study, a possible existence of genotype × environment interaction was verified for yearling weight in Nellore cattle, utilising a reaction norms model. Therefore, possible changes in the breeding value were evaluated for 46 032 animals, from three distinct herds, according to the environmental gradient variation of the different contemporary groups. Under a Bayesian approach, analyses were carried out utilising INTERGEN software resulting in solutions of contemporary groups dispersed in the environmental gradient from –90 to +100 kg. The estimates of heritability coefficients ranged from 0.19 to 0.63 through the environmental gradient and the genetic correlation between intercept and slope of the reaction norms was 0.76. The genetic correlation considering all animals of the herds in the environmental gradient ranged from 0.83 to 1.0, and the correlation between breeding values of bulls in different environments ranged from 0.79 to 1.0. The results showed no effect of genotype × environment interaction on yearling weight in the herds of this study. However, it is important to verify a possible influence of the genotype × environment in the genetic evaluation of beef cattle, as different environments might cause interference in gene expression and consequently difference in phenotypic response.


Sign in / Sign up

Export Citation Format

Share Document