scholarly journals Development of Two Screening Methods for Tomato Seedlings Containing the NPT II Selectable Marker Gene

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 872F-872
Author(s):  
Jeanne G. Layton ◽  
Tasneem S. Rangwala ◽  
Bradley J. LaVallee ◽  
Jeannie M. Rottnek ◽  
Noelle Romaine

Two simple, cost-effective methods to screen fresh-market tomato seedlings containing the kanamycin resistance gene construct, in which the nopaline synthase promoter from pMON128 is driving the NPT II gene, have been developed. The assays can reliably distinguish kanamycin-resistant from sensitive progeny for a variety of tomato genotypes. One method is an in vitro germination assay. Two selective agents, geneticin (G418) and kanamycin sulfate, were evaluated for their efficacy, and titrations were performed to determine the optimal concentration of the appropriate agent. The second method is a whole-plant spray test of seedlings to identify kanamycin-resistant progeny. A protocol was developed that could distinguish positives from negatives in 5 weeks. Currently, these assays are being used to screen R1 progeny rapidly to identify positives and obtain segregation ratios. They also are being used to screen R2 progeny to identify quickly those lines that are “true-breeding” or homozygous for field trial evaluation.

2012 ◽  
Vol 10 (1) ◽  
pp. 81-86 ◽  
Author(s):  
A. Khatun ◽  
M. M. Hasan ◽  
M. A. A. Bachchu ◽  
M. Moniruzzaman ◽  
K. M. Nasiruddin

Two potato varieties namely Cardinal and Heera were used in the Agrobacterium-mediated genetic transformation experiment to investigate the genetic transformation ability in the Biotechnology laboratory of the Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh during 2006 to 2007. Agrobacterium tumefaciens strain LBA 4404 having a binary vector pB1121 of 14 KDa containing selectable marker gene npt II (neomycine phosphotransferase II) conferring kanamycin resistance, and the CIPK antisense gene encoding calcineurin B-like protein were used. Leaf and internodes were used as explants. Expression of the transgene (GUS) was confirmed by histochemical analysis. The variety Cardinal was found more suitable for expressing best GUS response (80% GUS positive) over Heera.DOI: http://dx.doi.org/10.3329/agric.v10i1.11068The Agriculturists 2012; 10(1): 81-86


2021 ◽  
Vol 52 (3) ◽  
pp. 745-755
Author(s):  
G. H. Danial ◽  
D. A. Ibrahim ◽  
G. Q. Song

An efficient protocol for Agrobacterium-mediated transformation of tomato cultivars Sandra and Rocky was conducted to examine the possibility of producing transgenic tomato plants cultivars harbouring the nptII gene, conferring kanamycin resistance. To achieve this aim, tomato cotyledon explants were transformed using EHA105 Agrobacterium tumefaciens strain harboring the binary vectors pBI121 which contains Gus gene, and neomycin phosphotransferase II (nptII) as selectable marker gene under the control of a CaMV35S promoter and nopaline synthase (nos) Terminator. Transformant detection was carried out in three distinct ways. First antibiotic selection, Kanamycin at a concentration of100 mgl-1 found to be efficient for this purpose. Second histochemical GUS assay revealed the presence of blue colored zones in a number of shoots and leaves for both in vitro and the greenhouse-grown transgenic plants. Third PCR analysis indicated positive result by showing the fragment for nptII gene in tested transformants, while was absent in non-transgenic control (wild type). On the other hand, the results showed that Sandra cultivar was more efficient for regeneration and subsequently transformation frequency than Rocky cultivar, which record 26.66% of transformation frequency compared with 11.57% in Rocky cultivar.


2018 ◽  
Vol 18 (5) ◽  
pp. 321-368 ◽  
Author(s):  
Juan A. Bisceglia ◽  
Maria C. Mollo ◽  
Nadia Gruber ◽  
Liliana R. Orelli

Neglected diseases due to the parasitic protozoa Leishmania and Trypanosoma (kinetoplastids) affect millions of people worldwide, and the lack of suitable treatments has promoted an ongoing drug discovery effort to identify novel nontoxic and cost-effective chemotherapies. Polyamines are ubiquitous small organic molecules that play key roles in kinetoplastid parasites metabolism, redox homeostasis and in the normal progression of cell cycles, which differ from those found in the mammalian host. These features make polyamines attractive in terms of antiparasitic drug development. The present work provides a comprehensive insight on the use of polyamine derivatives and related nitrogen compounds in the chemotherapy of kinetoplastid diseases. The amount of literature on this subject is considerable, and a classification considering drug targets and chemical structures were made. Polyamines, aminoalcohols and basic heterocycles designed to target the relevant parasitic enzyme trypanothione reductase are discussed in the first section, followed by compounds directed to less common targets, like parasite SOD and the aminopurine P2 transporter. Finally, the third section comprises nitrogen compounds structurally derived from antimalaric agents. References on the chemical synthesis of the selected compounds are reported together with their in vivo and/or in vitro IC50 values, and structureactivity relationships within each group are analyzed. Some favourable structural features were identified from the SAR analyses comprising protonable sites, hydrophobic groups and optimum distances between them. The importance of certain pharmacophoric groups or amino acid residues in the bioactivity of polyamine derived compounds is also discussed.


2019 ◽  
Vol 15 (1) ◽  
pp. 63-70
Author(s):  
Shiv Dev Singh ◽  
Arvind Kumar ◽  
Firoz Babar ◽  
Neetu Sachan ◽  
Arun Kumar Sharma

Background: Thienopyrimidines are the bioisoster of quinazoline and unlike quinazoline exist in three isomeric forms corresponding to the three possible types annulation of thiophene to the pyrimidine ring viz thieno[2,3-d] pyrimidine, thieno[3,2-d] pyrimidine and thieno[3,4-d]pyrimidine. Heterocyclic containing the thienopyrimidinone moiety exhibits various pronounced activities such as anti-hypertensive, analgesic and anti-inflammatory, antiviral, platelet aggregation inhibitory, antiprotozoal bronchodilatory, phosphodiesterase inhibitory, antihistaminic, antipsychotic and antimicrobial activity. Objective: Synthesis of novel 3(N,N-dialkylamino)alkyl/phenyl substituted thieno[2,3-d]pyrimidinones as H1-anti-histaminic and antimicrobial agents. Methods: A series of 3-[(N,N-dialkylamino)alkyl/phenyl]-2-(1H)thioxo-5,6,7,8-tetrahydrobenzo(b) thieno(2,3-d)pyrimidine-4(3H)-ones[4a-d], their oxo analogous [5a-d] and 3-[(N,N-dialkylamino)alkyl]- 2-chlorophenyl-5,6,7,8-tetrahydrobenzo(b)thieno(2,3-d)pyrimidine- 4 (3H)-ones[6a-d]derivative were synthesized from 2-amino-4,5,6,7-tetrahydrobenzo(b)thiophene-3-carboxylic acid by nucleophilic substitution of different N,N-dialkyl alkylene/phenylene diamines on activated 3-acylchloride moiety followed by cyclocondensation with carbon disulfide and ethanolic potassium hydroxide to get [4a-d] and in second reaction by condensation with 4-chlorobenzoyl chloride to get [6a-d] by single pot novel innovative route. The oxo analogous [5a-d] were prepared by treating derivatives [4a-d] with potassium permagnate in ethanolic KOH. The synthesized compound were evaluated for H1-antihistaminic and antimicrobial activities. Results: All synthesized compounds exhibited significant H1-antihistaminic activity by in vitro and in vivo screening methods and data were verified analytically and statistically. The compound 4a, 4b, 5a and 5b showed significant H1-antihistaminiic activity than the reference standard chlorpheniramine maleate. The compound 6d, 6c, 5c and 4c exhibited significant antimicrobial activity.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 3023-3034
Author(s):  
Weiyuan Liang ◽  
Dou Wang ◽  
Xiaohui Ren ◽  
Chenchen Ge ◽  
Hanyue Wang ◽  
...  

AbstractTwo-dimensional black phosphorus (BP) has been demonstrated to be promising in photoelectronic devices, electrode materials, and biomedicine owing to its outstanding properties. However, the application of BP has been hindered by harsh preparation conditions, high costs, and easy degradation in ambient condition. Herein, we report a facile and cost-effective strategy for synthesis of orthorhombic phase BP and a kind of BP-reduced graphene oxide (BP/rGO) hybrids in which BP remains stable for more than 4 weeks ascribed to the formation of phosphorus-carbon covalent bonds between BP and rGO as well as the protection effect of the unique wrinkle morphology of rGO nanosheets. Surface modification BP/rGO hybrids (PEGylated BP/rGO) exhibit excellent photothermal performance with photothermal conversion efficiency as high as 57.79% at 808 nm. The BP/rGO hybrids exhibit enhanced antitumor effects both in vitro and in vivo, showing promising perspectives in biomedicine.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 736
Author(s):  
Kamila Malecka ◽  
Edyta Mikuła ◽  
Elena E. Ferapontova

Improved outcomes for many types of cancer achieved during recent years is due, among other factors, to the earlier detection of tumours and the greater availability of screening tests. With this, non-invasive, fast and accurate diagnostic devices for cancer diagnosis strongly improve the quality of healthcare by delivering screening results in the most cost-effective and safe way. Biosensors for cancer diagnostics exploiting aptamers offer several important advantages over traditional antibodies-based assays, such as the in-vitro aptamer production, their inexpensive and easy chemical synthesis and modification, and excellent thermal stability. On the other hand, electrochemical biosensing approaches allow sensitive, accurate and inexpensive way of sensing, due to the rapid detection with lower costs, smaller equipment size and lower power requirements. This review presents an up-to-date assessment of the recent design strategies and analytical performance of the electrochemical aptamer-based biosensors for cancer diagnosis and their future perspectives in cancer diagnostics.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zeping Qiu ◽  
Jingwen Zhao ◽  
Fanyi Huang ◽  
Luhan Bao ◽  
Yanjia Chen ◽  
...  

AbstractMyocardial fibrosis and ventricular remodeling were the key pathology factors causing undesirable consequence after myocardial infarction. However, an efficient therapeutic method remains unclear, partly due to difficulty in continuously preventing neurohormonal overactivation and potential disadvantages of cell therapy for clinical practice. In this study, a rhACE2-electrospun fibrous patch with sustained releasing of rhACE2 to shape an induction transformation niche in situ was introduced, through micro-sol electrospinning technologies. A durable releasing pattern of rhACE2 encapsulated in hyaluronic acid (HA)—poly(L-lactic acid) (PLLA) core-shell structure was observed. By multiple in vitro studies, the rhACE2 patch demonstrated effectiveness in reducing cardiomyocytes apoptosis under hypoxia stress and inhibiting cardiac fibroblasts proliferation, which gave evidence for its in vivo efficacy. For striking mice myocardial infarction experiments, a successful prevention of adverse ventricular remodeling has been demonstrated, reflecting by improved ejection fraction, normal ventricle structure and less fibrosis. The rhACE2 patch niche showed clear superiority in long term function and structure preservation after ischemia compared with intramyocardial injection. Thus, the micro-sol electrospun rhACE2 fibrous patch niche was proved to be efficient, cost-effective and easy-to-use in preventing ventricular adverse remodeling.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1635
Author(s):  
Sweeny Chauhan ◽  
Alish Kerr ◽  
Brian Keogh ◽  
Stephanie Nolan ◽  
Rory Casey ◽  
...  

The prevalence of prediabetes is rapidly increasing, and this can lead to an increased risk for individuals to develop type 2 diabetes and associated diseases. Therefore, it is necessary to develop nutritional strategies to maintain healthy glucose levels and prevent glucose metabolism dysregulation in the general population. Functional ingredients offer great potential for the prevention of various health conditions, including blood glucose regulation, in a cost-effective manner. Using an artificial intelligence (AI) approach, a functional ingredient, NRT_N0G5IJ, was predicted and produced from Pisum sativum (pea) protein by hydrolysis and then validated. Treatment of human skeletal muscle cells with NRT_N0G5IJ significantly increased glucose uptake, indicating efficacy of this ingredient in vitro. When db/db diabetic mice were treated with NRT_N0G5IJ, we observed a significant reduction in glycated haemoglobin (HbA1c) levels and a concomitant benefit on fasting glucose. A pilot double-blinded, placebo controlled human trial in a population of healthy individuals with elevated HbA1c (5.6% to 6.4%) showed that HbA1c percentage was significantly reduced when NRT_N0G5IJ was supplemented in the diet over a 12-week period. Here, we provide evidence of an AI approach to discovery and demonstrate that a functional ingredient identified using this technology could be used as a supplement to maintain healthy glucose regulation.


Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2694-2700 ◽  
Author(s):  
DR Rill ◽  
RC Moen ◽  
M Buschle ◽  
C Bartholomew ◽  
NK Foreman ◽  
...  

Abstract Autologous bone marrow transplantation (ABMT) is widely used as treatment for malignant disease. Although the major cause of treatment failure is relapse, it is unknown if this arises entirely because of residual disease in the patient or whether contaminating cells in the rescuing marrow contribute. Attempts to purge marrow of its putative residual malignant cells may delay hematopoietic reconstitution and are of uncertain efficacy. We now describe how retrovirus-mediated gene transfer may be used to elucidate the source of relapse after ABMT for acute myeloid leukemia and to evaluate the efficacy of purging. Clonogenic myeloid leukemic blast cells in patient marrow can be transduced with the NeoR gene-containing helper-free retrovirus, LNL6, with an efficacy of 0% to 23.5% (mean, 10.5%). Transduced colonies grow in selective media and the presence of the marker gene can be confirmed in individual malignant colonies by polymerase chain reaction. If such malignant cells remain in harvested “remission” marrow, they will therefore be marked after exposure to LNL6. Detection of the marker gene in the malignant cells present at any later relapse would be firm evidence that residual disease contributed to disease recurrence, and would permit rapid subsequent evaluation of purging techniques. The technique also marks normal marrow progenitors from patients with acute myeloblastic leukemia. These colony-forming cells can be detected in long-term marrow cultures at a frequency of 1% to 18% for up to 10 weeks after exposure to the vector. Animal models and analysis of probability tables both suggest that these levels of marking in vitro are sufficient to provide information about the mechanisms of relapse and the biology of marrow regeneration in vivo. These preclinical data form part of the basis for current clinical studies of gene transfer into marrow before ABMT.


Sign in / Sign up

Export Citation Format

Share Document